Титан инертный металл. Титан - описание элемента с фото, характеристика его влияния на организм человека, а также потребность в этом химическом элементе. Титан часто используется для изготовления сплавов

1941 Температура кипения 3560 Уд. теплота плавления 18,8 кДж/моль Уд. теплота испарения 422,6 кДж/моль Молярная теплоёмкость 25,1 Дж/(K·моль) Молярный объём 10,6 см ³/моль Кристаллическая решётка простого вещества Структура решётки гексагональная
плотноупакованная (α-Ti) Параметры решётки a=2,951 с=4,697 (α-Ti) Отношение c /a 1,587 Температура Дебая 380 Прочие характеристики Теплопроводность (300 K) 21,9 Вт/(м·К) Номер CAS 7440-32-6

Энциклопедичный YouTube

    1 / 5

    ✪ Титан / Titanium. Химия – просто

    ✪ Титан - САМЫЙ ПРОЧНЫЙ МЕТАЛЛ НА ЗЕМЛЕ!

    ✪ Химия 57. Элемент титан. Элемент ртуть - Академия занимательных наук

    ✪ Производство титана. Титан один из самых прочных металлов в мире!

    ✪ Иридий - Самый РЕДКИЙ металл на Земле!

    Субтитры

    Всем привет! С вами Александр Иванов и это проект «Химия – просто» И сейчас мы немного зажжем с титаном! Вот так выглядят несколько грамм чистого титана, которые были получены давным давно в манчестерском университете, когда он ещё даже не был университетом Этот образец из того самого музея А вот так выглядит основной минерал, из которого добывают титан Это Рутил Всего известно более 100 минералов, которые содержат титан В 1867 году, все что было известно людям о титане, умещалось в учебнике на 1 странице К началу 20 века, ничего особо не изменилось В 1791 году английский химик и минеролог Уильям Грегор в минерале менакините открыл новый элемент и назвал его «менакином» Чуть позже, в 1795 году немецкий химик Мартин Клапрот, открыл новый химический элемент в другом минерале – рутиле Своё название титан получил от Клапрота, который назвал его в честь царицы эльфов Титании Однако по другой версии название элемента происходит от титанов, могучих сыновей богини земли – Геи Однако, в 1797 году выяснилось, что Грегор и Клапрот открыли один и тот же химический элемент Но название осталось то, которое дал Клапрот Но, ни Грегор, ни Клапрот не смогли получить металлический титан Они получили белый кристаллический порошок, который был двуокисью титана Впервые металлический титан был получен русским ученым Д.К. Кириловым в 1875 году Но как это бывает без должного освещения, его работа была не замечена После этого чистый титан получали шведы Л. Нильсон и О. Петерсон, а также француз Муассан И лишь в 1910 году американский химик М. Хантер усовершенствовал предыдущие способы получения титана и получил несколько граммов чистого 99% титана Именно поэтому в большинстве книг именно Хантер указывается, как ученый, получивший металлический титан Большого будущего титану никто не пророчил, так как малейшие примеси в его составе, делали его очень хрупким и непрочным, что не позволяло проводить механическую обработку Поэтому некоторые соединения титана нашли свое широкое применение раньше, чем сам металл Четыреххлористый титан использовался в первую мировую войну для создания дымовых завес На открытом воздухе тетрахлорид титана гидролизуется с образование оксихлоридов титана и оксида титана Белый дым, который мы видим – это и есть частицы оксихлоридов и оксида титана То что это именно частицы можно подтвердить, если мы капнем несколько капель тетрахлорида титана в воду Тетрахлорид титана в настоящее время используется для получения металлического титана Метод получения чистого титана за сто лет не изменился Сначала двуокись титана с помощью хлора переводят в четыреххлористый титан, о котором мы говорили ранее Затем, при помощи магнийтермии, из четыреххлористого титана получают металлический титан, который образуется в виде губки Данный процесс проводится при температуре 900°С в стальных ретортах Из-за жестких условий проведения реакции, у нас к сожалению нет возможности показать данный процесс В итоге получается титановая губка, которую переплавляют в компактный металл Для получения сверхчистого титана используют метод иодидного рафинирования, о котором мы подробно расскажем в видео о цирконии Как вы уже заметили, тетрахлорид титана – это прозрачная бесцветная жидкость при нормальных условиях Но если мы возьмем трихлорид титана, то это твердое фиолетовое вещество Всего на один атом хлора меньше в молекуле, и уже другое состояние Трихлорид титана гигроскопичен. Поэтому работать с ним можно только в инертной атмосфере Трихлорид титана хорошо растворяется в соляной кислоте Этот процесс вы сейчас и наблюдаете В растворе образуется комплексный ион 3– Что такое комплексные ионы, расскажу как-нибудь в следующий раз. А пока просто ужасайтесь:) Если к полученному раствору добавить немного азотной кислоты, то происходит образование нитрата титана и выделение бурого газа, что мы собственно и видим Существует качественная реакция на ионы титана Капнем пероксид водорода Как видите, происходит реакция с образованием ярко-окрашенного соединения Это надтитановая кислота В 1908 году в США стали использовать Двуокись титана для производства белил, которые пришли на смену белилам, в основе которых лежали свинец и цинк Титановый белила сильно превосходили по качеству свинцовые и цинковые аналоги Также оксид титана применяли для производства эмали, которые использовали для покрытия металла и дерева в судостроении В настоящее время диоксид титана применяют в пищевой промышленности как белый краситель – это добавка Е171, которую можно встретить в крабовых палочках, сухих завтраках, майонезе, жевательной резинке, молочных продуктах и т.п Также диоксид титана используют в косметике – он входит в состав крема для защиты от загара «Не все то золото, что блестит» – эту поговорку мы знаем с детства И по отношению к современной церкви и титану она работает в буквальном смысле И вроде бы, что общего может быть между церковью и титаном? А вот что: все современные купола церквей, которые переливаются золотом, на самом деле к золоту не имеют никакого отношения В действительности все купола покрыты нитридом титана Также нитридом титана покрывают сверла по металлу Только в 1925 году был получен титан высокой чистоты, что позволило изучить его физико-химические свойства И они оказались фантастическими Оказалось, что титан, будучи почти вдвое легче железа, по прочности превосходит многие стали Также, титан хотя в полтора раза тяжелее алюминия, но зато в шесть раз прочнее его и сохраняет свою прочность до 500°С Из-за своей высокой электропроводности и немагнитности, титан имеет высокий интерес в электротехнике Титан имеет высокую устойчивость к коррозии Благодаря своим свойствам титан стал материалом космических технологий В России в Верхней Салде находится корпорация ВСМПО-АВИСМА, которая производит титан для мировой авиакосмической промышленности Из Верхне Салдинского титана делают боинги, аэрбасы, роллс-ройсы, различное химическое оборудование и множество другого дорогостоящего барахла Однако, каждый из вас может приобрести лопату или ломик из чистого титана! И это не шутка! А вот так реагирует мелкодисперсный порошок титана с кислородом воздуха Благодаря такому красочному горению, титан нашел применение в пиротехнике А на этом все, подписывайтесь, ставьте палец вверх, не забывайте поддерживать проект и рассказывать друзьям! Пока!

История

Открытие TiO 2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор ?! и немецкий химик М. Г. Клапрот . У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, ), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля - оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз - идентичные оксиды титана.

Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус . Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI 4 .

Происхождение названия

Металл получил своё название в честь титанов , персонажей древнегреческой мифологии, детей Геи . Название элементу дал Мартин Клапрот в соответствии со своими взглядами на химическую номенклатуру в противовес французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном .

Нахождение в природе

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре - 0,57 % по массе, в морской воде - 0,001 мг/л . В ультраосновных породах 300 г/т, в основных - 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al 2 O 3 . Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов . До 30 % TiO 2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO 2 , ильменит FeTiO 3 , титаномагнетит FeTiO 3 + Fe 3 O 4 , перовскит CaTiO 3 , титанит CaTiSiO 5 . Различают коренные руды титана - ильменит-титаномагнетитовые и россыпные - рутил-ильменит-цирконовые.

Месторождения

Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана . В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58,5 %) и Украина (40,2 %) . Крупнейшее месторождение в России - Ярегское .

Запасы и добыча

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO 2 . Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603-673 млн т., а рутиловых - 49,7-52,7 млн т . Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более, чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 % .

Крупнейший в мире производитель титана - российская компания «ВСМПО-АВИСМА » .

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак , получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а не восстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки - порошок диоксида титана TiO 2 . Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором , получая пары тетрахлорида титана TiCl 4:

T i O 2 + 2 C + 2 C l 2 → T i C l 4 + 2 C O {\displaystyle {\mathsf {TiO_{2}+2C+2Cl_{2}\rightarrow TiCl_{4}+2CO}}}

Образующиеся пары TiCl 4 при 850 °C восстанавливают магнием :

T i C l 4 + 2 M g → 2 M g C l 2 + T i {\displaystyle {\mathsf {TiCl_{4}+2Mg\rightarrow 2MgCl_{2}+Ti}}}

Кроме этого в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена и Кембриджского университета , где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести . В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает ~1000-1100°C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций:

2 C a O → 2 C a + O 2 {\displaystyle {\mathsf {2CaO\rightarrow 2Ca+O_{2}}}}

Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает из оксида титан:

O 2 + C → C O 2 {\displaystyle {\mathsf {O_{2}+C\rightarrow CO_{2}}}} T i O 2 + 2 C a → T i + 2 C a O {\displaystyle {\mathsf {TiO_{2}+2Ca\rightarrow Ti+2CaO}}}

Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций и процесс повторяется вплоть до полного преобразования катода в титановую губку, либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например, оксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора .

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом , выделяя Ti из TiCl 4 . Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

Физические свойства

Титан - легкий серебристо-белый металл . Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой (a=2,951 Å; с=4,679 Å ; z=2; пространственная группа C6mmc ), β-Ti с кубической объёмно-центрированной упаковкой (a=3,269 Å; z=2; пространственная группа Im3m ), температура перехода α↔β 883 °C, ΔH перехода 3,8 кДж/моль. Точка плавления 1660±20 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³ , атомная плотность 5,71⋅10 22 ат/см³ [ ] . Пластичен, сваривается в инертной атмосфере. Удельное сопротивление 0,42 мкОм·м при 20 °C

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок .

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO 2 , благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Титановая пыль имеет свойство взрываться. Температура вспышки - 400 °C. Титановая стружка пожароопасна.

Титан, наряду с сталью, вольфрамом и платиной обладает высокой устойчивостью в вакууме, что, наряду с его лёгкостью делает его очень перспективным при конструировании космических кораблей .

Химические свойства

Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме , H 3 PO 4 и концентрированной H 2 SO 4).

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой он взаимодействует благодаря образованию комплексного аниона 2− . Титан наиболее подвержен коррозии в органических средах, так как, в присутствии воды на поверхности титанового изделия образуется плотная пассивная пленка из оксидов и гидрида титана. Наиболее заметное повышение коррозионной стойкости титана заметно при повышении содержания воды в агрессивной среде с 0,5 до 8,0%, что подтверждается электрохимическими исследованиями электродных потенциалов титана в растворах кислот и щелочей в смешанных водно-органических средах.

При нагревании на воздухе до 1200 °C Ti загорается ярким белым пламенем с образованием оксидных фаз переменного состава TiO x . Из растворов солей титана осаждается гидроксид TiO(OH) 2 ·xH 2 O, осторожным прокаливанием которого получают оксид TiO 2 . Гидроксид TiO(OH) 2 ·xH 2 O и диоксид TiO 2 амфотерны .

Применение

В чистом виде и в виде сплавов

  • Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении.
  • Металл применяется в: химической промышленности (реакторы , трубопроводы , насосы , трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, украшениях для пирсинга , медицинской промышленности (протезы, остеопротезы), стоматологических и эндодонтических инструментах, зубных имплантатах , спортивных товарах, ювелирных изделиях, мобильных телефонах, лёгких сплавах и т. д.
  • Титановое литьё выполняют в вакуумных печах в графитовые формы. Также используется вакуумное литьё по выплавляемым моделям. Из-за технологических трудностей в художественном литье используется ограниченно. Первой в мировой практике монументальной литой скульптурой из титана является памятник Юрию Гагарину на площади его имени в Москве .
  • Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов [каких? ] .
  • Нитинол (никель-титан) - сплав, обладающий памятью формы, применяемый в медицине и технике.
  • Алюминиды титана являются очень стойкими к окислению и жаропрочными, что, в свою очередь, определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.
  • Титан является одним из наиболее распространённых геттерных материалов , используемых в высоковакуумных насосах .

В виде соединений

  • Белый диоксид титана (TiO 2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171 .
  • Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности.
  • Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки или покрытий.
  • Карбид титана, диборид титана, карбонитрид титана - важные компоненты сверхтвёрдых материалов для обработки металлов.
  • Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, так как имеет цвет, похожий на золото.
  • Титанат бария BaTiO 3 , титанат свинца PbTiO 3 и ряд других титанатов - сегнетоэлектрики .

Существует множество титановых сплавов с различными металлами. Легирующие элементы разделяют на три группы, в зависимости от их влияния на температуру полиморфного превращения: на бета-стабилизаторы, альфа-стабилизаторы и нейтральные упрочнители. Первые понижают температуру превращения, вторые повышают, третьи не влияют на неё, но приводят к растворному упрочнению матрицы. Примеры альфа-стабилизаторов: алюминий, кислород, углерод, азот. Бета-стабилизаторы: молибден, ванадий, железо, хром, никель. Нейтральные упрочнители: цирконий, олово, кремний. Бета-стабилизаторы, в свою очередь, делятся на бета-изоморфные и бета-эвтектоидообразующие.

Самым распространённым титановым сплавом является сплав Ti-6Al-4V (в российской классификации - ВТ6).

Анализ рынков потребления

Чистота и марка чернового титана (титановой губки) обычно определяется по его твёрдости, которая зависит от содержания примесей. Наиболее распространены марки ТГ100 и ТГ110 [ ] .

Физиологическое действие

Как было сказано выше, титан применяется также в стоматологии. Отличительная черта применения титана заключается не только в прочности, но и способности самого металла сращиваться с костью , что даёт возможность обеспечить квазимонолитность основы зуба.

Изотопы

Природный титан состоит из смеси пяти стабильных изотопов: 46 Ti (7,95%), 47 Ti (7,75%), 48 Ti (73,45%), 49 Ti (5,51%), 50 Ti (5,34%).

Известны искусственные радиоактивные изотопы 45 Ti (T ½ = 3,09 ч), 51 Ti (Т ½ = 5,79 мин) и другие.

Примечания

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry . - 2013. - Vol. 85 , no. 5 . - P. 1047-1078 . - DOI :10.1351/PAC-REP-13-03-02 .
  2. Редкол.:Зефиров Н. С. (гл. ред.). Химическая энциклопедия: в 5 т. - Москва: Советская энциклопедия, 1995. - Т. 4. - С. 590-592. - 639 с. - 20 000 экз. - ISBN 5-85270-039-8.
  3. Титан - статья из Физической энциклопедии
  4. J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
  5. Месторождение титана .
  6. Месторождение титана .
  7. Ильменит, рутил, титаномагнетит - 2006 г.
  8. Титан (неопр.) . Информационно-аналитический центр "Минерал". Дата обращения 19 ноября 2010. Архивировано 21 августа 2011 года.
  9. Корпорация ВСМПО-АВИСМА
  10. Koncz, St; Szanto, St.; Waldhauser, H., Der Sauerstoffgehalt von Titan-jodidstäben, Naturwiss. 42 (1955) pp.368-369
  11. Титан - металл будущего (рус.) .
  12. Титан - статья из Химической энциклопедии
  13. Влияние воды на процесс пассивации титана - 26 Февраля 2015 - Химия и химическая технология в жизни (неопр.) . www.chemfive.ru. Дата обращения 21 октября 2015.
  14. Искусство литья в ХХ веке
  15. На мировом рынке титана за последние два месяца цены стабилизировались (обзор)

Ссылки

  • Титан в Популярной библиотеке химических элементов

Тита́н (лат. Titanium; обозначается символом Ti) - элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов , с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) - лёгкий металл серебристо-белого цвета.

История

Открытие TiO 2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1789), выделил новую «землю» (окись) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля - окислы одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз - идентичные окислы титана.
Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI 4 .

Происхождение названия

Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот, в соответствии со своими взглядами на химическую номенклатуру в противоход французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.
Однако согласно другой версии, публиковавшейся в журнале «Техника-Молодежи» в конце 1980-х, новооткрытый металл обязан своим именем не могучим титанам из древнегреческих мифов, а Титании - королеве фей в германской мифологии (жена Оберона в шекспировском «Сне в летнюю ночь»). Такое название связано с необычайной «лёгкостью» (малой плотностью) металла.

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.
Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки - порошок диоксида титана TiO 2 . Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl 4:
TiO 2 + 2C + 2Cl 2 =TiCl 2 + 2CO

Образующиеся пары TiCl 4 при 850 °C восстанавливают магнием:
TiCl 4 + 2Mg = 2MgCl 2 + Ti

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl 4 . Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

Физические свойства

Титан - легкий серебристо-белый металл. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмноцентрированной упаковкой, температура полиморфного превращения α↔β 883 °C.
Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.
При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO 2 , благодаря этому коррозионностоек в большинстве сред (кроме щелочной).
Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C. Титановая стружка пожароопасна.

История открытия титана непредсказуема и весьма увлекательна. Как думаете, кто открыл титан? Варианты:

  1. Ученый.
  2. Опытный минералог.
  3. Лесник.
  4. Священник.

Титан открыл и нашел британский священник в 1791 году в долине Менакин (ниже место нахождения показано на Гугл карте):

Как священник Улильям Грегор открыл титан?

Минералогия не была профессией пастора. Скорее это было хобби, увлечение. Открытие титана – большая удача и самый выдающийся поступок в жизни Грегора. Добыл он титан благодаря темному песку, который обнаружил у местного моста в долине Менакин. Грегора заинтересовал магнитизм песка, похожего на антрацит, и тот решил провести эксперимент над находкой в своей мини-лаборатории.
Священник погрузил пробу найденного песка в соляную кислоту. В результате светлая часть пробы растворилась и остался только темный песок. Тогда Уильям долил в песок серную кислоту, которая растворила остаток пробы. Решив продолжить эксперимент, Грегор нагрел раствор и тот начал мутнеть. В результате вышло что-то наподобие известкового молока:

Грегора удивил оттенок суспензии, но не настолько, чтобы делать дерзкие выводы об открытии нового элемента Ti. Он решил добавить еще кислоты H2SO4, но помутнение не исчезало. Тогда пастор продолжил нагрев суспензии, пока жидкость полностью не испарилась. На ее месте остался белый порошок:

Тут-то Уильям Грегор решил, что имеет дело с неизвестным ему видом извести. Он тут же передумал после прокаливания порошка (нагрев до 400 градусов Цельсия и выше) – вещество пожелтело. Не в силах идентифицировать открытие, он позвал на помощь своего друга, который в отличии от пастора, занимался минералогией профессионально. Его друг, ученый Хавкинс подтвердил открытие – это новый элемент !
Далее пастор подал заявку об открытии элемента. в «Физический журнал » Найденную породу он назвал «менаканитом», добытый оксид «менакином ». Но сам элемент тогда названия так и не получил...
В честь открытия титана на месте возле моста, где Уильям Грегор нашел "странный" темный песок, в апреле 2002 года установили мемориальную доску в честь открытия. Позже священник решил углубиться в изучение минералов и открыл собственное Геологическое общество в родном городе Корнуэлле. Он также нашел титан в тибетском корунде и олове в родном округе.
Мемориальная доска :

Кто дал название металлу Титану?

Мартин Генрих Клапрот скептически принял статью из «Физического журнала» об открытии менакина. Тогда много чего открывали. Сам ученый открыл Уран и Цирконий ! Он решил проверить правдивость слов священника на деле. Во время исканий обнаружил некий «венгерский красный шерл» и решил разложить его до элементов. В результате получил аналогичный "Грегоровскому" порошок белого цвета. После сравнения плотностей оказалось, что это одинаковое вещество.


Священник и именитый ученый открыли один и тот же минерал – это был не менакин и не шерл, а рутил. Порода, в которой Грегор нашел черный песок ныне называется ильменитом. Клапрот знал, что пастор первым обнаружил диоксид и не претендовал на открытие (тем более, что он уже открыл Уран и Цирконий). Но научное сообщество больше приняло старания ученого, чем священника. Сейчас считается, что и Грегор и Клапрот одинаково в этом участвовали и «вместе» открыли Титан в 1791 году (хоть пастор и сделал это первым).

Почему титан так назвали?

В 18 веке огромное влияние оказывала французская школа химика Лавуазье. Согласно принципам школы, новые элементы называли исходя из их ключевых особенностей. По такому принципу назвали Оксиген (порожденный воздухом), Гидроген (порожденный водой) и Азот («безжизненный). Но Клапрот критически отнесся к этому принципу Лавуазье, хоть и поддерживал другие его учения. Он решил пойти по своему принципу: Мартин называл элементы мифическими именами, планетами и другими названиями, не имеющими отношения к свойствам вещества.
Генрих Клапрот назвал добытый из рутила элемент Титаном в честь первых обитателей планеты Земля . Титан Прометей дал людям огонь, а открытый металл титан ныне дает авиации, судо- и ракетостроению сырье для новых открытий!

Является одним из важнейших конструкционных материалов, поскольку сочетает прочность, твердость и легкость. Однако другие свойства металла весьма специфичны, что делает процесс получения вещества тяжелым и дорогостоящим. И сегодня нами будет рассмотрена мировая технология производства титана, кратко упомянем и .

Существует металл в двух модификациях.

  • α-Ti – существует до температуры в 883 С, обладает плотной гексагональной решеткой.
  • β-Ti – имеет объемно-центрированную кубическую решетку.

Переход осуществляется с очень небольшим изменением плотности, поскольку последняя при нагревании постепенно уменьшается.

  • Во время эксплуатации титановых изделий в большинстве случаев имеют дело с α-фазой. А вот при плавке и изготовлении сплавов металлурги работают с β-модификацией.
  • Вторая особенность материала – анизотропия. Коэффициент упругости и магнитная восприимчивость вещества зависит от направления, причем разница довольно заметная.
  • Третья черта – зависимость свойств металл от чистоты. Обычный технический титан не годится, например, для использования в ракетостроении, поскольку из-за примесей теряет свою жаростойкость. В этой области промышленности применяют только исключительно чистое вещество.

О составе титана поведает это видео:

Производство титана

Использовать металл начали только в 50-е годы прошлого века. Его добыча и производство являются сложным процессом, благодаря чему этот относительно распространенный элемент относили к условно редким. И далее мы рассмотрим технологию, оборудование цехов по производству титана.

Сырье

Титан занимает 7 место по распространенности в природе. Чаще всего это оксиды, титанаты и титаносиликаты. Максимальное количество вещества содержится в двуокисях – 94–99%.

  • Рутил – самая устойчивая модификация, представляет собой минерал синеватого, буровато-желтого, красного цвета.
  • Анатаз – довольно редкий минерал, при температуре в 800–900 С переходит в рутил.
  • Брукит – кристалл ромбической системы, при 650 С необратимо переходит в рутил с уменьшением объема.
  • Более распространены соединения металла с железом – ильменит (до 52,8% титана). Это гейкилит, пирофанит, кричтон – химический состав ильменита весьма сложен и колеблется в широких переделах.
  • Используется в промышленных целях результат выветривания ильменита – лейкоксен . Здесь происходит довольно сложная химическая реакция, при которой из ильменитовой решетки удаляется часть железа. В результате объем титана в руде повышается – до 60%.
  • Также используют руду, где металл связан не с закисным железом, как в ильмените, а выступает в виде титаната окисного железа – это аризонит, псевдобрукит .

Наибольшее значение имеют месторождения ильменита, рутила и титаномагнетита. Разделяют их на 3 группы:

  • магматические – связаны с участками распространения ультраосновных и основных пород, проще говоря, с распространением магмы. Чаще всего это ильменитовые, титаномагнетитовые ильменит-гематитовые руды;
  • экзогенные месторождения – россыпные и остаточные, аллювиальные, аллювиально-озерные месторождения ильменита и рутила. А также прибрежно-морские россыпи, титановые, анатазовые руды в корах выветривания. Наибольшее значение имеет прибрежно-морские россыпи;
  • метаморфизированные месторождения – песчаники с лейкоксеном, ильменит-магнетитовые руды, сплошные и вкрапленные.

Экзогенные месторождения – остаточные или россыпные, разрабатываются открытым методом. Для этого используют драги и экскаваторы.

Разработка коренных месторождений связана с проходкой шахт. Полученную руду на месте дробят и обогащают. Применяют гравитационное обогащение, флотацию, магнитную сепарацию.

В качестве исходного сырья может использоваться титановый шлак. Он содержит до 85% диоксида металла.

Технология получения

Процесс производства металла из ильменитовых руд состоит из нескольких стадий:

  • восстановительная плавка с целью получения титанового шлака;
  • хлорирование шлака;
  • производства металла восстановлением;
  • рафинирование титана – как правило, проводится с целью улучшения свойств продукта.

Процесс это сложный, многоэтапный и дорогостоящий. В результате достаточно доступный металл оказывается весьма дорогим в производстве.

О производстве титана расскажет данный видеосюжет:

Получение шлака

Ильменит является ассоциацией оксида титана с закисным железом. Поэтому целью первого этапа производства является отделение диоксида от оксидов железа. Для этого оксиды железа восстанавливают.

Процесс осуществляют в электродуговых печах. Ильменитовый концентрат загружают в печь, затем вводят восстановитель – древесный уголь, антрацит, кокс, и прогревают до 1650 С. При этом железо восстанавливается из оксида. Из восстановленного и науглероживающегося железа получают чугун, а оксид титана переходит в шлак. Последний в итоге содержит 82–90% титана.

Чугун и шлак разливают по отдельным изложницам. Чугун используют в металлургическом производстве.

Хлорирование шлака

Целью процесса является получение тетрахлорида металла, для дальнейшего применения. Непосредственно хлорировать ильменитовый концентрат оказывается невозможным, из-за образования большого количества хлорного железа – соединение очень быстро разрушает оборудование. Поэтому без стадии предварительного удаления оксида железа обойтись нельзя. Хлорирование проводится в шахтных или солевых хлораторах. Процесс несколько отличается.

  • Шахтный хлоратор – футерованное цилиндрическое сооружение высотой до 10 м и диаметром до 2 м. Сверху в хлоратор укладывают брикеты из измельченного шлака, а через фурмы подают газ магниевых электролизеров, содержащий 65–70% хлора. Реакция между титановых шлаком и хлором происходит с выделением тепла, что обеспечивает требуемый для процесса температурный режим. Газообразный тетрахлорид титана отводят через верх, а остатки шлака непрерывно удаляют снизу.
  • Солевой хлоратор , камера, футерованная шамотом и наполовину заполненная электролитом магниевых электролизеров – отработанным. В расплаве содержаться хлориды металлов – натрия, калия, магния и кальция. В расплав сверху подают измельченный титановый шлак и кокс, снизу вдувают хлор. Поскольку реакция хлорирования экзотермична, температурный режим поддерживается самим процессом.

Тетрахлорид титана очищают, причем несколько раз. Газ может содержать углекислый газ, угарный газ, другие примеси, так что очистка производится в несколько этапов.

Отработанный электролит периодически заменяют.

Получение металла

Металл восстанавливают из тетрахлорида магнием или натрием. Восстановление происходит с выделением тепла, что позволяет проводить реакцию без дополнительного обогрева.

Для восстановления используют электрические печи сопротивления. Сначала в камеру помещают герметичную колбу из хромо- сплавов высотой в 2–3 м. После того как емкость прогреют до +750 С, в нее вводят магний. А затем подают тетрахлорид титана. Подача регулируется.

1 цикл восстановления длится 30–50 ч, чтобы температура не повышалась выше 800–900 С, реторту обдувают воздухом. В итоге получают от 1 до 4 тонн губчатой массы – металл осаждается в виде крошек, которые спекаются в пористую массу. Жидкий хлорид магния периодически сливают.

Пористая масса впитывает довольно много хлорида магния. Поэтому после восстановления осуществляют вакуумную отгонку. Для этого реторту прогревают до 1000 С, создают в ней вакуум и выдерживают 30–50 часов. За это время примеси испаряются.

Восстановление натрием протекает почти таким же образом. Разница наличествует только в последнем этапе. Чтобы удалить примеси хлорида натрия, титановую губку измельчают и выщелачивают из нее соль обычной водой.

Рафинирование

Полученный описанным выше образом технический титан вполне годится для производства оборудования и емкостей для химической промышленности. Однако для областей, где требуется высокая жаростойкость и однородность свойств, металл не годится. В этом случае прибегают к рафинированию.

Рафинирование производится в термостате, где поддерживается температура в 100–200 С. В камеру помещают реторту с титановой губкой, а затем с помощью специального устройства в закрытой камере разбивают капсулу с йодом. Йод реагирует с металлом, образуя йодид титана.

В реторте натянуты титановые проволоки, по которым пропускают электрический ток. Проволока раскаляется до 1300–1400 С, полученный йодид разлагается на проволоке, формируя кристаллы чистейшего титана. Йод освобождается, вступает в реакцию. С новой порцией титановой губки и процесс продолжается, пока не исчерпается металл. Получение останавливают, когда благодаря наращиванию титана диаметр проволоки становится равным 25–30 мм. В одном таком аппарате можно получить 10 кг металла с долей в 99,9–99,99%.

Если необходимо получить ковкий металл в слитках, поступают иначе. Для этого титановую губку переплавляют в вакуумной дуговой печи, поскольку металл при высокой температуре активно впитывает газы. Расходуемый электрод получают из титановых отходов и губки. Жидкий металл затвердевает в аппарате в кристаллизаторе, охлаждаемом водой.

Плавку, как правило, повторяют дважды, чтобы улучшить качество слитков.

Из-за особенностей вещества – реакции с кислородом, азотом и впитывание газов, получение всех титановых сплавов также возможно лишь в электрических дуговых вакуумных печах.

Про Россию и другие страны-производители титана читайте ниже.

Популярные изготовители

Рынок производства титана достаточно закрытый. Как правило, страны, производящие большое количество металла, сами же и являются его потребителями.

В России самой большой и едва ли не единственной компанией, занимающейся получением титана, является «ВСМПО-Ависма». Она считается крупнейшим изготовителем металла, но это не совсем верно. Компания производит пятую часть титана, однако мировое потребление его выглядит иначе: около 5% расходуется на изделия и приготовление сплавов, а 95% – на получение диоксида.

Итак, производство титана в мире по странам:

  • Ведущей страной-производителем является Китай. Страна обладает максимальными запасами титановых руд. Из 18 известных заводов по получению титановой губки 9 расположены в Китае.
  • Второе место занимает Япония. Интересно, что в стране на авиакосмический сектор уходит только 2–3% металла, а остальной используется в химической промышленности.
  • Третье место в мире по производству титана занимает Россия и ее многочисленные заводы. Затем следует Казахстан.
  • США – следующая в списке страна-производитель, расходует титан традиционным образом: 60–75% титана использует авиакосмическая промышленность.

Производство титана – процесс технологически сложный, дорогостоящий и длительный. Однако потребности в этом материале настолько велики, что прогнозируется изрядное увеличение выплавки металла.

О том, как происходит резка титана на одном из производств в России, расскажет это видео:

Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.

По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.

Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж.

Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.

Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO 2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB 2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.