Теплоотдача. Излучение. Теплопроведение. Конвекция. Испарение. Конвекция – определение и примеры явления Естественная конвекция

Коэффициент теплопроводности при комнатной температуре.

Порядок величины коэффициента теплопроводности для различных веществ.

Конвекция -это 2 ой способ переноса тепла в пространстве.

Конвекция - это перенос тепла в жидкостях и газах с неравномерным распределением температуры за счет движения макрочастиц.

Перенос теплоты вместе с макроскопическими объемами вещества носит название конвективного теплопереноса , или просто конвекции .

Теплообмен между жидкостью и поверхностью твердого тела. Этот процесс получил специальное название конвективная теплоотдача (теплота отдается от жидкости к поверхности или наоборот)

Но конвекции в чистом виде не существует она всегда сопровождается теплопроводностью, такой совместный перенос тепла называется конвективным теплообменом.

Процесс теплообмена между поверхностью твердого тела и жидкостью называется теплоотдачей , а поверхность тела, через которую переносится теплота,- поверхностью теплообмена или теплоотдающей поверхностью .

Теплопередача -это перенос тепла от одной жидкости к другой через разделяющую их твердую стенку.

Виды_ движения жидкости. Различают вынужденную и естественную конвекцию. Движение называется вынужденным, если оно происходит за счет внешних сил, не связанных с процессом теплообмена. Например, за счет сообщения ей энергии насосом или вентилятором. Движение называется свободным , если оно определяется процессом теплообмена и происходит за счет разности плотностей нагретых и холодных макрочастиц жидкости.

Режимы.движения, жидкости. Движение жидкости может быть установившимся и неустановившимся. Установившимся называется такое движение, при котором скорость во всех точках пространства, занятого жидкостью, не изменяется во времени. Если скорость потока изменяется во времени (по величине или направлению), то движение будет неустановившееся .

Экспериментально установлено два режима движения жидкости: ламинарный и турбулентный. При ламинарном режиме все частицы жидкости движутся параллельно друг другу и ограждающим поверхностям. При турбулентном режиме частицы жидкости движутся хаотически, неупорядоченно. Наряду с направленным движением вдоль потока частицы могут двигаться поперек и навстречу потоку. При этом скорость жидкости непрерывно изменяется как н величине, так и по направлению.



Выделение ламинарного и турбулентного режимов имеет большое значение, так как в зависимости от режима различным будет механизм переноса тепла в жидкости. При ламинарном режиме тепло в поперечном направлении потока переносится лишь путем теплопроводности, а при направлении потока переносится лишь путем теплопроводности, а при турбулентном, кроме того, и за счет турбулентных вихрей, или конвекции.

Понятие пограничного слоя. Исследования показали, что в потоке вязкой жидкости, омывающем какое-либо тело, по мере приближения к его поверхности скорость уменьшается и на самой поверхности становит­ся равной нулю. Вывод о том, что скорость жидкости, лежащей на по­верхности тела, равна нулю, называется гипотезой прилипания. Она спра­ведлива до тех пор, пока жидкость можно рассматривать как сплошную среду.

Пусть неограниченный поток жидкости движется вдоль плоской поверхности (рис). Скорость жидкости вдали от нее равна w0, а на самой поверхности согласно гипотезе прилипания равна нулю. Следовательно, около поверхности существует слой замороженной жидкости, называемый динамическим пограничным слоем , в котором скорость изменяется от 0 до …... Так как скорость в пограничном слое приближается к w 0 асимптотически, то вводят следующее определение его толщины: толщиной динамического пограничного слоя называется расстояние от поверхности, на котором скорость отличается от w0 ,на определенную величину, обычно на 1%.

По мере движения вдоль поверхности толщина пограничного слоя растет. Вначале образуется ламинарный пограничный слои, который с ростом толщины становится неустойчивым и разрушается, превращаясь в турбулентный пограничный слой. Однако и здесь, вблизи поверхности, сохраняется тонкий ламинарный подслой……., в котором жидкость движется ламинарно. На рис. показано изменение скорости в пределах ламинарного (сечение I) и турбулентного (сечение II) по

Конвекция- перемещение макроскопических частей среды (газа, жидкости), приводящее к переносу массы и теплоты. В реальных условиях конвекция всегда сопровождается теплопроводностью или молекулярным переносом теплоты. Совместный процесс переноса теплоты конвекцией и теплопроводностью называется конвективным теплообменом . Конвективный теплообмен между жидкостью и твердым телом часто называют теплоотдачей . На процесс теплоотдачи конвекцией влияет целый ряд факторов. 1. Характер движения жидкости около твердой стенки. По природе возникновения различают два вида движения - свободное и вынужденное. Свободным называется движение, происходящее вследствие разности плотностей нагретых и холодных частиц жидкости в поле тяжести.

При соприкосновении с нагретым телом жидкость (воздух) нагревается, становится легче и поднимается вверх. При соприкосновении с холодным телом жидкость охлаждается, становится тяжелее и опускается вниз. Свободное движение называется также естественной конвекцией и может происходить в ограниченном (канале, щелях) или неограниченном пространстве. Возникновение и интенсивность свободного движения определяются тепловыми условиями процесса и зависят от расположения поверхности (вертикальное или горизонтальное), направления теплоотдающей поверхности (вверх или вниз), рода жидкости, разности температур, напряженности гравитационного поля и объема пространства, в котором протекает процесс. Вынужденным называется движение, возникающее под действием посторонних возбудителей, например насоса, вентилятора и пр. В общем случае наряду с вынужденным движением одновременно может развиваться и свободное движение жидкости.

Относительное влияние последнего тем больше, чем больше разность температур в отдельных точках жидкости и чем меньше скорость вынужденного движения. Вынужденное движение жидкости может быть ламинарным или турбулентным. При ламинарном режиме течение имеет спокойный, струйчатый характер, а при турбулентном - движение неупорядоченное, вихревое. Для процессов теплоотдачи режим движения жидкости имеет большое значение. Изменение режима движения жидкости происходит при некоторой «критической» скорости, которая в каждом конкретном случае различна. Однако при любом виде движения в тонком слое у поверхности из-за наличия вязкого трения течение жидкости затормаживается, и скорость падает до нуля. Этот слой принято называть вязким подслоем.

Интенсивность теплоотдачи для газов и жидкостей в основном определяется термическим сопротивлением этого подслоя. При ламинарном режиме перенос теплоты в направлении нормали к стенке в основном осуществляется путем теплопроводности пограничного слоя. При турбулентном режиме перенос теплоты сохраняется лишь в вязком малом подслое, а внутри турбулентного потока перенос осуществляется путем интенсивного перемешивания частиц жидкости. Потеря устойчивости ламинарного течения сопровождается образованием завихрений, которые за счет диффузии заполняют весь поток, вызывая сильное перемешивание жидкости, называемое турбулентным смешением. При турбулентном движении весь поток насыщен беспорядочно движущимися вихрями, которые непрерывно возникают и исчезают.


В последующем вследствие вязкости жидкости вихри постепенно затухают и исчезают. Чем больше вихрей, тем интенсивнее перемешивание жидкости, тем больше турбулентность потока и тем выше теплоотдача.Различают естественную и искусственную турбулентность. Первая образуется естественно в процессе нагрева жидкости и ее движения вдоль стенки, когда вначале имеет место ламинарное, спокойное движение, затем неустойчивое, неупорядоченное, после чего вихревое и турбулентное, с отрывом вихрей от стенки. Вторая вызывается искусственным способом путем установки или наличия в потоке каких-либо закручивающих лопаток, направляющих аппаратов, решеток и других устройств.

25. Режимы движения теплоносителей, их описание, характеристика, их влияние на процесс теплообмена.

Теплообменным аппаратом (теплообменником) называется устройство, в котором происходит передача теплоты от одной среды к другой. Среды, участвующие в теплообмене, называются теплоносителями. В качестве теплоносителей могут использоваться пары различных веществ, газы, жидкости и жидкие металлы. Теплоноситель, отдающий теплоту и имеющий более высокую температуру, называется первичным, а воспринимающий теплоту теплоноситель с более низкой температурой называется вторичным. Основная задача теплообменников заключается в передаче тепловой энергии между несколькими теплоносителями, которые проходят через это оборудование. Устройство аппарата зависит от течения теплоносителей и их взаимной геометрии. Есть несколько конфигураций направления.

Противоток Противоточный теплообменник представляет собой устройство с параллельным перемещением теплоносителей относительно друг друга. Такое устройство считается эффективным за счет наиболее результативного использования разности температур.

Параллельное однонаправленное течение. Название вида теплообменника само говорит за себя: теплоносители перемещаются в одном направлении, параллельно друг другу. Если при проектировании объекта важное значение придается эффективному использованию разности температур, то такой тип оборудования не подходит. Он используется в случае необходимости иметь примерно одинаковую температуру стенки, передающей тепло.

Перекрестный ток. Такое устройство предполагает, что теплоносители двигаются под прямым углом относительно друг друга. Так, первое течение проходит в трубах, которые собраны в пучок. Второй теплоноситель перемещается между этими трубами в целом перпендикулярно их оси. Такой теплообменник по эффективности находится между первым и вторыми вышеуказанными устройствами. Преимуществом аппарата является более простая конструкция.

Многоходовой ток в трубах и в пространстве между ними. Один и тот же теплообменник можно сконструировать таким образом, чтобы в нем комбинировались характеристики, присущие противоточному и параллельному оборудованию. Для этого нужно предусмотреть поворот труб, находящихся в одном корпусе. Количество поворотов не ограничено. Такой же эффект может быть и при использовании прямых труб, если грамотно внедрить коллекторы, представляющие собой трубы в форме U, или серпантин. Так, по конструкции аппарат будет простым, а отверстия для труб будут располагаться с одной стороны кожуха.

Общий случай. Выше описаны отдельные варианты движения теплоносителей. На практике теплообменник состоит из многоходовых течений сред, которые взаимно проникают друг в друга. Для поступления теплоносителей в общий резервуар есть несколько входных точек и столько же - выходных. Жидкость в аппарате может течь трехмерно, но есть зона рециркуляции с замкнутой линией тока.

> Конвекция

Читайте определение конвекции и процесса теплообмена: решение задачи на конвекцию, формула и уравнения, естественная конвекция, изоляция, смена состояний.

Конвекция – транспортировка тепла через микроскопическое движение жидкости (двигатель машины охлаждается водой из системы охлаждения).

Задача обучения

  • Выявить механизмы конвекции при перемене состояния.

Основные пункты

  • Конвекция обусловливается масштабным потоком вещества в жидкостях. Твердые не способны использовать конвекцию для переноса.
  • Плавучими силами управляет естественная конвекция: горячий воздух поднимается, потому что с увеличением температуры уменьшается плотность.
  • По эффективности конвекция способна превосходить проводимость. Воздух играет роль плохого проводника, зато – отличный изолятор.
  • Конвекция часто возникает при смене состояния (испарение пота, таяние льда).

Термины

  • Естественная конвекция – метод транспортировки тепла. Жидкость, сосредоточенная вокруг источника, получает тепло и теряет плотность, из-за чего поднимается.
  • Положительный отзыв – обратная связь, где выходной сигнал усиливается положительным коэффициентом в каждом цикле.

Пример

Давайте используем конвекцию для воздуха сквозь стены дома. Большая часть конструкций лишены герметичности, поэтому воздух попадает сквозь двери, окна, трещины и т.д. Уходит примерно час на полное обновление воздуха. Возьмем дом размером 12м х 18м х 3м, а на замену воздуха уходит полчаса. Нужно вычислить теплоотдачу за единицу времени в ваттах, необходимых, чтобы нагреть холодный воздух на 10°C.

Для начала используем формулу: Q = mcΔT. Скорость теплопередачи – Q/t, где t – время обновления воздуха. ΔT составляет 10°C, но нам нужно выяснить значения для массы воздуха и его удельной теплоты, прежде чем вычислить Q. Теплоемкость воздуха – средневзвешенное значение удельных теплоемкостей азота и кислорода, где C = cp ≅ 1000 Дж/кг°C.

Определите массу воздуха из его плотности и заданного объема дома:

m = ρV = (1.29 кг/м 3)(12 м × 18 м × 3 м) = 836 кг

Рассчитайте тепло, переданное от изменения температуры воздуха:

Q = McΔT = (836 кг) (1000 Дж/кг°С) (10 °С) = 8.36 × 106 Дж

Рассчитайте теплоотдачу от тепла Q и времени оборота t. Воздух перевернут в t = 0.500ч = 1800 с, поэтому теплота составляет fracQt = (8.36 × 10 6 Дж)/1800 с = 4.64 кВт.

Конвекция

Конвекция – согласованное движение молекул внутри жидкостей. Конвекция массы не осуществима в твердых объектах, потому что в них не могут протекать объемные токи и ощутимая диффузия. Здесь диффузию тепла именуют теплопроводностью.

Конвекция создается масштабным потоком вещества. Если говорить о нашей планете, то атмосфера циркулирует потоком горячего воздуха от тропиков к полюсам и от холодных в обратном направлении

Обычно конвекция сложнее проводимости, но мы можем характеризовать ее и провести вычисления. Естественной конвекцией руководят плавучие силы: по мере роста температуры уменьшается плотность, и горячий воздух поднимается. Этот принцип можно применить для любых жидкостей.

Конвекция занимает важное место в теплопередаче внутри кастрюли с водой. Нагревшаяся вода начинает расширяться, теряет плотность и поднимается, чтобы раздать тепло другим областям воды, а прохладная опускается на дно. Далее процесс повторяется

Конвекция и изоляция

Воздух может использовать конвекцию для передачи тепла. Это плохой проводник, но отличный изолятор. На его характеристики будет влиять количество доступного пространства. Например, пустота между внутренней и внешней стенами дома – 9 см. Этого хватит, чтобы добиться от конвекции высокой эффективности. Изоляция исключит воздушный поток, поэтому снизится потеря тепла. Если же пустота занимает 1 см, то конвекция предотвращается и используют низкую проводимость воздуха. Животные пользуются мехом.

Конвекция и смена состояния

Конвекция часто сопровождает трансформацию. Так мы имеем возможность охлаждаться через потоотделение, даже если окружающая температура выше показателя в теле. Чтобы пот испарился, понадобится тепло кожи, но если не будет воздушного потока, то воздух насыщается, и испарение останавливается.

Возьмем пример с испарением воды в океане. Вместе с водой удаляется и тепло. Далее капельки конденсируются и создают облака, а атмосфера выделяет тепло. Таким образом, тепло из океана оказывается в атмосфере. Подобные схемы приводят к ураганам, штормам с молниями и даже вызывают град.

Кучевые облака, созданные водяным паром, поднявшимся из-за конвекции. Рост облаков обуславливается механизмом положительной обратной связи

Если приблизить руку к включенной электролампе или поместить ладонь над горячей плитой, можно почувствовать движение теплых потоков воздуха. Тот же эффект можно наблюдать при колебании листа бумаги, помещенного над открытым пламенем. Оба эффекта объясняются конвекцией.

Что представляет собой?

В основе явления конвекции лежит расширение более холодного вещества при соприкосновении с горячими массами. В таких обстоятельствах нагреваемое вещество теряет плотность и становится легче по сравнению с окружающим его холодным пространством. Наиболее точно данная характеристика явления соответствует перемещению тепловых потоков при нагревании воды.

Движение молекул в противоположных направлениях под воздействием нагревания - это именно то, на чем основывается конвекция. Излучение, теплопроводность выступают схожими процессами, однако касаются прежде всего передачи в твердых телах.

Яркие примеры конвекции - перемещение теплого воздуха в середине помещения с отопительными приборами, когда нагретые потоки движутся под потолок, а холодный воздух опускается к самой поверхности пола. Именно поэтому при включенном отоплении вверху комнаты воздух заметно теплее по сравнению с нижней частью помещения.

Закон Архимеда и тепловое расширение физических тел

Чтобы понять, что представляет собой естественная конвекция, достаточно рассмотреть процесс на примере действия закона Архимеда и явления расширения тел под воздействием теплового излучения. Так, согласно закону, повышение температуры обязательно приводит к увеличению объемов жидкости. Нагреваемая снизу жидкость в емкостях поднимается выше, а влага большей плотности, соответственно, перемещается ниже. В случае нагрева сверху более и менее плотные жидкости останутся на своих местах, в таком случае явления не произойдет.

Возникновение понятия

Впервые термин «конвекция» был предложен английским ученым Вильямом Прутом еще в 1834 году. Использовался он для описания перемещения тепловых масс в нагретых, движущихся жидкостях.

Первые теоретические исследования явления конвекции стартовали лишь в 1916 году. В ходе экспериментов было установлено, что переход от диффузии к конвекции в подогреваемых снизу жидкостях возникает при достижении некоторых критических температурных значений. Позже это значение получило определение «число Роэля». Оно было так названо в честь исследователя, занимавшегося его изучением. Результаты опытов позволили дать объяснение перемещению тепловых потоков под влиянием сил Архимеда.

Виды конвекции

Существует несколько видов описываемого нами явления - естественная и вынужденная конвекция. Пример перемещения потоков горячего и холодного воздуха в середине помещения как нельзя лучше характеризует процесс естественной конвекции. Что касается вынужденной, то ее можно наблюдать при перемешивании жидкости ложкой, насосом или мешалкой.

Конвекция невозможна при нагревании твердых тел. Всему виной достаточно сильное взаимное притяжение при колебании их твердых частиц. В результате нагрева тел твердой структуры не возникают конвекция, излучение. Теплопроводность заменяет указанные явления в таких телах и способствует передаче тепловой энергии.

Отдельным видом выступает так называемая капиллярная конвекция. Происходит процесс при перепадах температуры во время движения жидкости по трубам. В естественных условиях значение такой конвекции наряду с естественной и вынужденной крайне несущественно. Однако в космической технике капиллярная конвекция, излучение и теплопроводность материалов становятся весьма значимыми факторами. Даже самые слабые конвективные движения в условиях невесомости приводят к затруднению реализации некоторых технических задач.

Конвекция в слоях земной коры

Процессы конвекции неразрывно связаны с естественным образованием газообразных веществ в толще Рассматривать можно как сферу, состоящую из нескольких концентрических слоев. В самом центре располагается массивное горячее ядро, которое представляет собой жидкую массу высокой плотности с содержанием железа, никеля, а также прочих металлов.

Окружающими слоями для выступают литосфера и полужидкая мантия. Верхний слой земного шара представляет собой непосредственно земную кору. Литосфера сформирована из отдельных плит, которые находятся в свободном движении, перемещаясь по поверхности жидкой мантии. В ходе неравномерного нагревания различных участков мантии и горных пород, которые отличаются разным составом и плотностью, происходит образование конвективных потоков. Именно под воздействием таких потоков возникает естественное преобразование ложа океанов и перемещение несущих континентов.

Отличия конвекции от теплопроводности

Под теплопроводностью следует понимать способность физических тел к передаче тепла посредством движения атомных и молекулярных соединений. Металлы выступают отличными проводниками тепла, так как их молекулы находятся в неразрывном контакте друг с другом. Напротив, газообразные и летучие вещества выступают плохими проводниками тепла.

Как происходит конвекция? Физика процесса основывается на переносе тепла за счет свободного движения массы молекул веществ. В свою очередь, теплопроводность заключается исключительно в передаче энергии между составляющими частицами физического тела. Однако и тот, и другой процесс невозможен без наличия частиц вещества.

Примеры явления

Наиболее простым и доступным для понимания примером конвекции может послужить процесс работы обыкновенного холодильника. Циркуляция охлажденного газа фреона по трубам холодильной камеры приводит к снижению температуры верхних пластов воздуха. Соответственно, замещаясь более теплыми потоками, холодные опускаются вниз, охлаждая, таким образом, продукты.

Расположенная на тыльной панели холодильника решетка играет роль элемента, способствующего отводу теплого воздуха, образованного в компрессоре агрегата во время сжатия газа. Охлаждение решетки также основывается на конвективных механизмах. Именно по этой причине не рекомендуется загромождать пространство позади холодильника. Ведь только в таком случае охлаждение может происходить без затруднений.

Другие примеры конвекции можно заметить, наблюдая за таким природным явлением, как движение ветра. Нагреваясь над засушливыми континентами и охлаждаясь над местностью с более суровыми условиями, потоки воздуха начинают вытеснять друг друга, что приводит к их движению, а также перемещению влаги и энергии.

На конвекции завязана возможность парения птиц и планеров. Менее плотные и более теплые при неравномерном нагревании у поверхности Земли приводят к образованию восходящих потоков, что способствует процессу парения. Для преодоления максимальных расстояний без затраты сил и энергии птицам требуется умение находить подобные потоки.

Хорошие примеры конвекции - образование дыма в дымоходах и вулканических кратерах. Перемещение дыма вверх основано на его более высокой температуре и низкой плотности по сравнению с окружающей средой. При остывании дым постепенно оседает в нижние слои атмосферы. Именно по этой причине посредством которых происходит выброс в атмосферу, делают максимально высокими.

Наиболее распространенные примеры конвекции в природе и технике

Среди наиболее простых, доступных для понимания примеров, которые можно наблюдать в природе, быту и технике, следует выделить:

  • движение во время работы бытовых батарей отопления;
  • образование и движение облаков;
  • процесс движения ветра, муссонов и бризов;
  • смещение тектонических земных плит;
  • процессы, которые приводят к свободному газообразованию.

Приготовление пищи

Все чаще явление конвекции реализуется в современных бытовых приборах, в частности в духовых шкафах. Газовый шкаф с конвекцией позволяет готовить разные блюда одновременно на отдельных уровнях при различной температуре. При этом полностью исключается смешение вкусов и запахов.

Нагрев воздуха в традиционном духовом шкафу основывается на работе единственной горелки, что приводит к неравномерному распределению тепла. За счет целенаправленного перемещения горячих потоков воздуха при помощи специализированного вентилятора блюда в конвекционном духовом шкафу получаются более сочными, лучше пропекаются. Такие устройства быстрее нагреваются, что позволяет уменьшить время, требуемое на приготовление пищи.

Естественно, для хозяек, которые готовят в духовом шкафу всего лишь несколько раз в год, бытовой прибор с функцией конвекции нельзя назвать техникой первой необходимости. Однако для тех, кто не может жить без кулинарных экспериментов, такое устройство станет просто незаменимым на кухне.

Надеемся, представленный материал оказался полезным для вас. Всего доброго!

Если вытянуть руку над горячей плитой или над горящей электрической лампочкой, можно ощутить, как над этими предметами поднимаются струи теплого воздуха. Листик бумаги, подвешенный над горящей свечей или электрической лампочкой, под воздействием поднимающегося теплого воздуха начинает вращаться.

Подобное явление можно объяснить следующим образом. Воздух соприкасается с горячей лампой, нагревается, расширяется и обретает менее плотное состояние, в отличие от окружающего холодного воздуха. Сила Архимеда, которая действует на теплый воздух со стороны холодного воздуха снизу вверх, превосходит силу тяжести, которая действует на теплый воздух. Таким образом, теплый воздух поднимается вверх, тем самым, уступая место холодному воздуху.

Подобные явления мы можем наблюдать при нагревании жидкости снизу. Теплые слои жидкости – менее плотные, а, следовательно, более легкие – вытесняются вверх более плотными и тяжелыми, холодными слоями. Холодные слои жидкости, опустившись вниз, нагреваются от источника тепла и снова вытесняются менее нагретой жидкостью. Таким образом, такое движение равномерно прогревает всю воду. Это можно увидеть более наглядно, если на дно сосуда положить немного кристалликов марганцовки, которая окрашивает воду в фиолетовый цвет. В подобных опытах мы можем наблюдать еще одну разновидность теплопередачи – конвекция (латинское слово «конвекцио» – перенесение).

Следует отметить, что при процессе конвекции энергия перемещается самими струями газа или жидкости. К примеру, в комнате с отоплением, благодаря явлению конвекции поток нагретого воздуха поднимается к потолку, а холодного опускается к полу. Таким образом, воздух вверху гораздо теплее, чем возле пола.

Существует два вида конвекции: естественная (или другими словами свободная) и вынужденная. Примеры с нагревом жидкости и воздуха в комнате являются примерами естественной конвекции. Мы можем наблюдать вынужденную конвекцию, когда перемешиваем жидкость ложкой, мешалкой, насосом.

Такие вещества как жидкости и газы необходимо нагревать снизу. Если же делать наоборот – нагревать их сверху, конвекции не будет. Теплые слои не могут физически опуститься ниже холодных, более плотных и тяжелых. Таким образом, для протекания процесса конвекции необходимо нагревать газы и жидкости снизу.

В твердых телах конвекция происходить не может. Нам уже известно, что в твердых телах, частицы колеблются около определенной точки, т.к. они удерживаются взаимным притяжением. Поэтому, при нагревании твердых тел, в них не может образовываться вещество. В твердых телах, энергия может передаваться за счет теплопроводности.

Конвекция широко распространена в природе: в нижних слоях земной атмосферы, морях, океанах, в недрах нашей планеты, на Солнце (в слоях до глубины ~20-30% радиуса Солнца от его поверхности). С помощью явления конвекции осуществляют нагрев газов, а также жидкостей в разных технических устройствах.

Простым примером конвекции может также послужить охлаждение продуктов в холодильнике. Циркулирующий по трубам холодильника газ фреон, охлаждает пласты воздуха в верхней части холодильника. Охлажденный воздух, спустившись вниз, охлаждает все продукты, а потом снова направляется вверх. Когда мы раскладываем продукты питания в холодильнике, не стоит затруднять циркуляцию воздуха в нем. Решетка, расположенная ссади холодильника, служит для отвода теплого воздуха, который образуется в компрессоре при сжатии газа. Механизм охлаждения решетки также конвективный, поэтому следует оставлять свободным пространство за холодильником, чтобы конвекция проходила без затруднений.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.