Нервная система впервые появляется у. Впервые нервные клетки появляются у кишечнополостных. Они образуют в эктодерме примитивную диффузную нервную систему рассеянное нервное сплетение или. Особенности нервной системы кольчецов

Нервная система в живом организме представлена сетью коммуникаций, обеспечивающих его связь с окружающим миром и собственными процессами. Её базовым элементом является нейрон — клетка с отростками (аксонами и дендритами), передающая информацию электрическим и химическим путём.

Назначение нервной регуляции

Впервые нервная система появилась у живых организмов при необходимости более эффективного взаимодействия со средой. Развитие простейшей сети для передачи импульсов помогало не только воспринимать сигналы извне. Благодаря ей стало возможным организовывать собственные процессы жизнедеятельности для более успешного функционирования.

Во время эволюции структура нервной системы усложнялась: её задачей стало не только формирование адекватного ответа на внешние воздействия, но и организация собственного поведения. И. П. Павлов назвал такой способ функционирования

Взаимодействие со средой одноклеточных

Впервые нервная система появилась у организмов, состоящих более чем из одной клетки, так как она передаёт сигналы между нейронами, образующими сеть. Но уже у простейших можно наблюдать способность реагировать на внешние стимулы, обеспечивающиеся внутриклеточными процессами.

Нервная система многоклеточных качественно отличается от аналогичного образования у простейших. Последние всю систему связей располагают в пределах метаболизма единственной клетки. О разнообразных процессах, которые протекают вовне либо внутри, инфузория «узнаёт» из-за изменения состава протоплазмы и активности некоторых других структур. Многоклеточные живые существа имеют систему, построенную из функциональных единиц, каждая их которых наделена собственными обменными процессами.

Таким образом, у того впервые нервная система появляется, у кого есть не одна, а несколько клеток, то есть у Прототипом же служит проведение импульсов у простейших. На их уровне жизнедеятельности выявляется выработка протоплазмой структур, обладающих проводимостью импульсов. Аналогично у более сложноорганизованных живых существ эту функцию выполняют отдельные

Особенности нервной системы кишечнополостных

Многоклеточные животные, обитающие колониями, не разделяют между собой функций, и у них ещё нет нервной сети. Она возникает на том этапе, когда дифференцируются различные функции в организме многоклеточного.

Впервые нервная система появляется у гидры и других кишечнополостных. Она является сетью, проводящей нецеленаправленные сигналы. Структура ещё не оформлена, она диффузно распределена по всему телу кишечнополостного. Ганглиозные клетки и их нисслевская субстанция не до конца сформированы. Это наипростейший вариант нервной системы.

Тип моторики животного определяется диффузной сетевидной нервной системой. Гидра выполняет перистальтические движения, так как у неё нет специальных частей тела для перемещения и других движений. Для моторной активности ей необходима беспрерывная связь сокращающихся элементов, при этом требуется, чтобы основная масса проводящих клеток была расположена в сократительной части. У кого из животных впервые нервная система появляется в виде диффузной сети? У тех, которые являются основателями системы регуляции человека. Доказательством этому служит тот факт, что в развитии эмбриона животных присутствует гаструляция.

Особенности нервной системы гельминтов

Последующее совершенствование нервной регуляции было связано с развитием билатеральной симметрии взамен радиальной и формированием скоплений нейронов в различных частях организма.

В виде тяжей впервые нервная система появляется у 1 На этом этапе она представлена парными головными и отходящими от них сформированными волокнами. В сравнении с кишечнополостными такая система устроена гораздо сложней. У гельминтов обнаруживаются группы нервных клеток в виде узлов и ганглиев. Прототип головного мозга — ганглий в передней части тела, выполняющий регуляторные функции. Он называется мозговым ганглием. От него вдоль всего тела идут два нервных ствола, соединённые перемычками.

Все составные части системы расположены не снаружи, а погружены в паренхиму и тем самым защищены от травм. Впервые нервная система появляется у плоских червей вместе с простейшими органами чувств: осязанием, зрением и ощущением равновесия.

Особенности нервной системы нематод

Следующим этапом развития становится формирование кольцевого образования около глотки и отходящих от него нескольких длинных волокон. С такими характеристиками впервые нервная система появляется у Окологлоточное кольцо представляет собой единый круговой ганглий и выполняет функции базового органа восприятия. С ним связан вентральный тяж и дорзальный нерв.

Нервные стволы у нематод расположены интраэпителиально, то есть в гиподермальных валиках. В роли органов восприятия выступают сенсиллы — щетинки, папиллы, супплементарные органы, амфиды и фазмиды. Все они наделены смешанной чувствительностью.

Самые сложные органы восприятия нематод — амфиды. Они парные, могут быть различными по форме и находятся спереди. Их основная задача — распознавать химические агенты, расположенные далеко от тела. У части круглых червей имеются также рецепторы, воспринимающие внутренние и внешние механические воздействия. Они называются метанемами.

Особенности нервной системы кольчецов

Образование ганглий в нервной системе в дальнейшем развивается у кольчатых червей. У большинства из них ганглионизация брюшных стволов происходит так, что каждый сегмент червя имеет пару нервных узлов, которые соединяются волокнами с соседними сегментами. имеют брюшную нервную цепочку, образованную мозговым ганглием и парой тяжей, идущих от него. Они тянутся по брюшной плоскости. Воспринимающие элементы расположены спереди и представлены простейшими глазами, обонятельными клетками, ресничными ямками и локаторами. С парными узлами впервые нервная система появилась у кольчатых червей, но в дальнейшем она развивается у членистоногих. У них происходит увеличение ганглиев в головной части и совмещение узлов в теле.

Элементы диффузной сети в нервной системе человека

Вершиной эволюционного развития нервной системы является появление головного и спинного мозга у человека. Однако даже при наличии таких сложных структур сохраняется первоначальная диффузная организация. Эта сеть опутывает каждую клетку организма: кожу, сосуды и т. д. А ведь с такими характеристиками у того впервые нервная система появляется, у кого даже не было возможности дифференцировано воспринимать окружающую среду.

Благодаря этим «остаточным» структурным единицам у человека есть возможность ощущать различные воздействия даже на микроскопических участках. Организм может реагировать на появление мельчайшего чужеродного агента выработкой защитных реакций. Наличие диффузной сети в нервной системе человека подтверждается лабораторными методами исследований, основанными на введении красящего вещества.

Общая линия развития нервной системы в ходе эволюции

Эволюционные процессы нервной системы проходили в три этапа:

  • диффузная сеть;
  • гангилии;
  • спинной и головной мозг.

Структура и функционирование ЦНС очень отличаются от более ранних типов. В её симпатическом отделе представлены ганглиозные и сетевидные элементы. В своём филогенетическом развитии нервная система приобретала всё большую расчленённость и дифференциацию. Ганглиозный этап развития от сетевидного отличался наличием нейронов, всё ещё расположенных над системой проведения.

Любой живой организм — по сути монолит, состоящий из различных органов и их систем, которые постоянно и непрерывно взаимодействуют между собой и с внешним окружением. Впервые нервная система появилась у кишечнополостных, она представляла собой диффузную сеть, обеспечивающую элементарное проведение импульсов.

В эволюции нервная система претерпела несколько этапов развития, которые стали поворотными пунктами в качественной организации её деятельности. Эти этапы отличаются по количеству и видам нейрональных образований, синапсов, признакам их функциональной специализации, по образованию группировок нейронов, связанных между собой общностью функций. Выделяют три основных этапа структурной организации нервной системы: диффузный, узловой, трубчатый.

Диффузная нервная система наиболее древняя, имеется у кишечнополостных (гидра) животных. Такая нервная система характеризуется множественностью связей соседних элементов, что позволяет возбуждению свободно распространяться по нервной сети во все стороны.

Этот тип нервной системы обеспечивает широкую взаимозаменяемость и тем самым большую надёжность функционирования, однако эти реакции имеют неточный, расплывчатый характер.

Узловой тип нервной системы типичен для червей, моллюсков, ракообразных.

Он характерен тем, что связи нервных клеток организованы определённым образом, возбуждение проходит по жёстко определённым путям. Такая организация нервной системы оказывается более ранимой. Повреждение одного узла вызывает нарушение функций всего организма в целом, но она по своим качествам быстрее и точнее.

Трубчатая нервная система характерна для хордовых, она включает в себя черты диффузного и узлового типов. Нервная система высших животных взяла всё лучшее: высокую надёжность диффузного типа, точность, локальность быстроту организации реакций узлового типа.

Ведущая роль нервной системы

На первом этапе развития мира живых существ взаимодействие между простейшими организмами осуществлялось через водную среду первобытного океана, в которую поступали химические вещества, выделяемые ими. Первой древнейшей формой взаимодействия между клетками многоклеточных организм является химическое взаимодействие посредством продуктов обмена веществ, поступающих в жидкости организма. Такими продуктами обмена веществ, или метаболитами, являются продукты распада белков, углекислота и др. это — гуморальная передача влияний, гуморальный механизм корреляции, или связи между органами.

Гуморальная связь характеризуется следующими особенностями:

  • отсутствием точного адреса, по которому направляется химическое вещество, поступающее в кровь или другие жидкости тела;
  • химическое вещество распространяется медленно;
  • химическое вещество действует в ничтожных количествах и обычно быстро разрушается или выводится из организма.

Гуморальные связи являются общими и для мира животных, и для мира растений. На определённой ступени развития мира животных в связи с появлением нервной системы образуется новая, нервная форма связей и регуляций, которая качественно отличает мир животных от мира растений. Чем выше по своему развитию организм животного, тем большую роль играет взаимодействие органов через нервную систему, которое обозначается как рефлекторное. У высших живых организмов нервная система регулирует гуморальные связи. В отличие от гуморальной связи нервная связь имеет точную направленность к определённому органу и даже группе клеток; связь осуществляется в сотни раз с большей скоростью, чем скорость распространения химических веществ. Переход от гуморальной связи к нервной сопровождался не уничтожением гуморальной связи между клетками тела, а подчинением нервным связям и возникновению нервно-гуморальным связям.

На следующем этапе развития живых существ появляются специальные органы — железы, в которых вырабатываются гормоны, образующиеся из поступающих в организм пищевых веществ. Основная функция нервной системы заключается как в регуляции деятельности отдельных органов между собой, так и во взаимодействии организма как единого целого с окружающей его внешней средой. Любое воздействие внешней среды на организм оказывается, прежде всего, на рецепторы (органы чувств) и осуществляется через посредство изменений, вызываемых внешней средой и нервной системой. По мере развития нервной системы высший её отдел — большие полушария головного мозга — становится «распорядителем и распределителем всей деятельности организма».

Строение нервной системы

Нервная система образована нервной тканью, которая состоит из огромного количества нейронов — нервная клетка с отростками.

Нервная система условно подразделяется на центральную и периферическую.

Центральная нервная система включает головной и спинной мозг, а периферическая нервная система - нервы, отходящие от них.

Головной и спинной мозг представляют собой совокупность нейронов. На поперечном разрезе мозга различают белое и серое вещество. Серое вещество состоит из нервных клеток, а белое - из нервных волокон, являющихся отростками нервных клеток. В различных отделах центральной нервной системы расположение белого и серого вещества неодинаково. В спинном мозге серое вещество находится внутри, а белое — снаружи, в головном же (большие полушария, мозжечок), наоборот — серое вещество — снаружи, белое — внутри. В различных отделах головного мозга имеются отдельные скопления нервных клеток (серого вещества), расположенные внутри белого вещества, - ядра . Скопления нервных клеток находятся и за пределами центральной нервной системы. Они называются узлами и относятся к периферической нервной системе.

Рефлекторная деятельность нервной системы

Основной формой деятельности нервной системы является рефлекс. Рефлекс - реакция организма на изменение внутренней или внешней среды, осуществляемая при участии центральной нервной системы в ответ на раздражение рецепторов.

При всяком раздражении возбуждение с рецепторов передаётся по центростремительным нервным волокнам в центральную нервную систему, откуда через вставочный нейрон по центробежным волокнам оно идёт на периферию к тому или иному органу, деятельность которого изменяется. Весь этот путь через центральную нервную систему к рабочему органу, называется рефлекторной дугой образован обычно тремя нейронами: чувствительным, вставочным и двигательным. Рефлекс — сложный акт, в осуществлении которого принимает участие значительно большее количество нейронов. Возбуждение, попадая в центральную нервную систему, распространяется на многие отделы спинного мозга и доходит до головного. В результате взаимодействия многих нейронов осуществляется ответная реакция организма на раздражение.

Спинной мозг

Спинной мозг - тяж длиной около 45 см, диаметром 1 см, находится в канале позвоночника, покрыт тремя мозговыми оболочками: твёрдой, паутинной и мягкой (сосудистой).

Спинной мозг находится в позвоночном канале и представляет собой тяж, который вверху переходит в продолговатый мозг, а внизу заканчивается на уровне второго поясничного позвонка. Спинной мозг состоит из серого вещества, содержащего нервные клетки, и белого, состоящего из нервных волокон. Серое вещество расположено внутри спинного мозга и окружено со всех сторон белым веществом.

На поперечном разрезе серое вещество напоминает букву Н. В нём различают передние и задние рога, а также соединяющую перекладину, в центре которой находится узкий канал спинного мозга, содержащий спинномозговую жидкость. В грудном отделе выделяют боковые рога. В них заложены тела нейронов, иннервирующих внутренние органы. Белое вещество спинного мозга образовано нервными отростками. Короткие отростки соединяют участки спинного мозга, а длинные составляют проводниковый аппарат двусторонних связей с головным мозгом.

Спинной мозг имеет два утолщения - шейное и поясничное, от которых отходят нервы к верхним и нижним конечностям. От спинного мозга отходит 31 пара спинномозговых нервов. Каждый нерв начинается от спинного мозга двумя корешками — передним и задним. Задние корешки — чувствительные состоят из отростков центростремительных нейронов. Их тела расположены в спинномозговых узлах. Передние корешки — двигательные — являются отростками центробежных нейронов расположенных в сером веществе спинного мозга. В результате слияния переднего и заднего корешка образуется смешанный спинномозговой нерв. В спинном мозге сосредоточены центры, регулирующие наиболее простые рефлекторные акты. Основные функции спинного мозга - рефлекторная деятельность и проведение возбуждения.

В спинном мозге человека заложены рефлекторные центры мышц верхних и нижних конечностей, потоотделения и мочеиспускания. Функции проведения возбуждения заключается в том, что через спинной мозг проходят импульсы от головного мозга ко всем областям тела и обратно. По восходящим проводящим путям в головной мозг передаются центростемительные импульсы от органов (кожа, мышцы). По нисходящим путям центробежные импульсы передаются от головного мозга в спинной, затем на периферию, к органам. При повреждении проводящих путей наблюдается потеря чувствительности в различных участках тела, нарушение произвольных сокращений мышц и способности к движению.

Эволюция головного мозга позвоночных

Образование центральной нервной системы в виде нервной трубки впервые появляется у хордовых. У низших хордовых нервная трубка сохраняется в течение всей жизни, у высших - позвоночных - в стадии эмбриона на спинной стороне закладывается нервная пластинка, которая погружается под кожу и сворачивается в трубку. В эмбриональной стадии развития нервная трубка образует в передней части три вздутия — три мозговых пузыря, из которых развиваются отделы мозга: передний пузырь дает передний и промежуточный мозг, средний пузырь превращается в средний мозг, задний пузырь образует мозжечок и продолговатый мозг . Эти пять отделов мозга характерны для всех позвоночных животных.

Для низших позвоночных - рыб и земноводных - характерно преобладание среднего мозга над остальными отделами. У земноводных несколько увеличивается передний мозг и в крыше полушарий образуется тонкий слой нервных клеток - первичный мозговой свод, древняя кора. У рептилий значительно увеличивается передний мозг за счет скоплений нервных клеток. Большую часть крыши полушарий занимает древняя кора. Впервые у рептилий появляется зачаток новой коры. Полушария переднего мозга наползают на другие отделы, вследствие чего образуется изгиб в области промежуточного мозга. Начиная с древних рептилий, полушария головного мозга становятся самым большим отделом головного мозга.

В строении головного мозгаптиц и пресмыкающихся много общего. На крыше головного мозга - первичная кора, хорошо развит средний мозг. Однако у птиц по сравнению с рептилиями возрастают общая масса мозга и относительные размеры переднего мозга. Мозжечок крупный и имеет складчатое строение. У млекопитающих передний мозг достигает наибольшей величины и сложности. Большую часть мозгового вещества составляет новая кора, которая служит центром высшей нервной деятельности. Промежуточный и средний отделы мозга у млекопитающих невелики. Разрастающиеся полушария переднего мозга накрывают их и подминают под себя. У некоторых млекопитающих мозг гладкий, без борозд и извилин, но у большинства млекопитающих в коре мозга имеются борозды и извилины. Появление борозд и извилин происходит вследствие роста мозга при ограниченных размерах черепа. Дальнейший рост коры приводит к появлению складчатости в виде борозд и извилин.

Головной мозг

Если спинной мозг у всех позвоночных животных развит более или менее одинаково, то головной мозг существенно отличатся размерами и сложностью строения у разных животных. Особенно резкие изменения в ходе эволюции претерпевает передний мозг. У низших позвоночных передний мозг развит слабо. У рыб он представлен обонятельными долями и ядрами серого вещества в толще мозга. Интенсивное развитие переднего мозга связано с выходом животных на сушу. Он дифференцируется на промежуточный мозг и на два симметричных полушария, которые называются конечным мозгом . Серое вещество на поверхности переднего мозга (кора) впервые появляется у пресмыкающихся, развиваясь далее у птиц и особенно у млекопитающих. Действительно большими полушариями переднего мозга становятся только у птиц и млекопитающих. У последних они покрывают почти все другие отделы головного мозга.

Головной мозг расположен в полости черепа. В него входят ствол и конечный мозг (кора больших полушарий).

Ствол мозга состоит из продолговатого мозга, варолиева моста, среднего и промежуточного мозга.

Продолговатый мозг является непосредственным продолжением спинного мозга и расширяясь, переходит в задний мозг. Он в основном сохраняет форму и строение спинного мозга. В толще продолговатого мозга расположены скопления серого вещества — ядра черепно-мозговых нервов. В состав заднего моста входят мозжечок и варолиев мост . Мозжечок расположен над продолговатым мозгом и имеет сложное строение. На поверхности полушарий мозжечка серое вещество образует кору, а внутри мозжечка - его ядра. Как и спинной продолговатый мозг выполняет две функции: рефлекторную и проводниковую. Однако рефлексы продолговатого мозга более сложные. Это выражается в важном значении в регуляции сердечной деятельности, состоянии сосудов, дыхания, потоотделения. В продолговатом мозге расположены центры всех этих функций. Здесь же находятся центры жевания, сосания, глотания, отделения слюны и желудочного сока. Несмотря на малую величину (2,5–3 см), продолговатый мозг представляет собой жизненно важный отдел ЦНС. Повреждение его может стать причиной смерти вследствие прекращения дыхания и деятельности сердца. Проводниковая функция продолговатого мозга и варолиева моста заключается в передаче импульсов из спинного мозга в головной и обратно.

В среднем мозге расположены первичные (подкорковые) центры зрения и слуха, которые осуществляют рефлекторные ориентировочные реакции на световые и звуковые раздражения. Эти реакции выражаются в различных движениях туловища, головы и глаз в сторону раздражителей. Средний мозг состоит из ножек мозга и четверохолмия. Средний мозг регулирует и распределяет тонус (напряжение) скелетных мышц.

Промежуточный мозг состоит из двух отделов - таламус и гипоталамус , каждый из которых состоит из большого числа ядер зрительных бугров и подбугровой области. Через зрительные бугры центростремительные импульсы передаются к коре больших полушарий от всех рецепторов тела. Ни один центростремительный импульс, откуда бы он ни шёл, не может пройти к коре, минуя зрительные бугры. Таким образом, через промежуточный мозг осуществляется связь всех рецепторов с корой больших полушарий. В подбугровой области расположены центры, оказывающие влияние на обмен веществ, терморегуляцию и железы внутренней секреции.

Мозжечок находится позади продолговатого мозга. Он состоит из серого и белого вещества. Однако в отличие от спинного мозга и ствола серое вещество - кора - находится на поверхности мозжечка, а белое вещество расположено внутри, под корой. Мозжечок координирует движения, делает их чёткими и плавными, играет важную роль в сохранении равновесия тела в пространстве, а также оказывает влияние на тонус мышц. При поражении мозжечка у человека наблюдается падение тонуса мышц, расстройство движений и изменение походки, замедляется речь и т.д. Однако через некоторое время движения и мышечный тонус восстанавливаются благодаря тому, что неповреждённые участки центральной нервной системы берут на себя функции мозжечка.

Большие полушария - наиболее крупный и развитый отдел головного мозга. У человека они образуют основную массу головного мозга и по всей своей поверхности покрыты корой. Серое вещество покрывает полушария снаружи и образует кору головного мозга. Кора полушарий человека имеет толщину от 2 до 4 мм и слагается из 6–8 слоёв, образованных 14–16 млрд. клеток, различных по форме, величине и выполняемым функциям. Под корой находится белое вещество. Оно состоит из нервных волокон, связывающих кору с расположенными ниже отделами центральной нервной системы и отдельные доли полушарий между собой.

Кора головного мозга имеет извилины, разделённые бороздами, которые значительно увеличивают её поверхность. Три самые глубокие борозды делят полушария на доли. В каждом полушарии различают четыре доли: лобную, теменную, височную, затылочную . Возбуждение разных рецепторов поступают в соответствующие воспринимающие участки коры, называемые зонами , и отсюда передаются к определённому органу, побуждая его к действию. В коре выделяют следующие зоны. Слуховая зона расположена в височной доле, воспринимает импульсы от слуховых рецепторов.

Зрительная зона лежит в затылочной области. Сюда поступают импульсы от рецепторов глаза.

Обонятельная зона находится на внутренней поверхности височной доли и связана с рецепторами носовой полости.

Чувствительно-двигательная зона расположена в лобной и теменной долях. В этой зоне находятся главные центры движения ног, туловища, рук, шеи, языка и губ. Здесь же лежит и центр речи.

Полушария головного мозга - это высший отдел центральной нервной системы, контролирующий работу всех органов у млекопитающих. Значение больших полушарий у человека заключается ещё и в том, что они представляют собой материальную основу психической деятельности. И.П.Павлов показал, что в основе психической деятельности лежат физиологические процессы, происходящие в коре головного мозга. Мышление связано с деятельностью всей коры головного мозга, а не только с функцией отдельных её областей.

Отдел головного мозга Функции
Продолговатый мозг Проводниковая Связь спинного и вышележащих отделов головного мозга.
Рефлекторная

Регуляция деятельности дыхательной, сердечно-сосудистой, пищеварительной систем:

  • пищевые рефлексы, рефлексы слюноотделения, глотания;
  • защитные рефлексы: чиханье, моргание, кашель, рвота.
Варолиев мост Проводниковая Соединяет полушария мозжечка между собой и с корой больших полушарий головного мозга.
Мозжечок Координационная Координация произвольных движений и сохранение положения тела в пространстве. Регуляция мышечного тонуса и равновесия
Средний мозг Проводниковая Ориентировочные рефлексы на зрительные, звуковые раздражители (повороты головы и туловища ).
Рефлекторная
  • Регуляция мышечного тонуса и позы тела;
  • координация сложных двигательных актов (движения пальцев и рук ) и т.д.
Промежуточный мозг

таламус

  • сбор и оценка поступающей информации от органов чувств, передача в кору больших полушарий головного мозга наиболее важной информации;
  • регуляция эмоционального поведения, болевых ощущений.

гипоталамус

  • контролирует работу желёз внутренней секреции, сердечно-сосудистой системы, обмен веществ (жажда, голод ), температуру тела, сон и бодрствование;
  • придаёт поведению эмоциональную окраску (страх, ярость, удовольствие, недовольство )

Кора больших полушарий

Поверхность коры больших полушарий у человека составляет около 1500 см 2 , что во много раз превышает внутреннюю поверхность черепа. Такая большая поверхность коры образовалась благодаря развитию большого количества борозд и извилин, в результате чего большая часть коры (около 70%) сосредоточена в бороздах. Самые большие борозды больших полушарий - центральная , которая проходит поперёк обоих полушарий, и височная , отделяющая височную долю от остальных. Кора больших полушарий, несмотря на малую толщину (1,5–3 мм) имеет очень сложное строение. В ней насчитывают шесть основных слоёв, которые отличаются строением, формой и размерами нейронов и связями. В коре находятся центры всех чувствительных (рецепторных) систем, представительства всех органов и частей тела. В связи с этим к коре подходят центростремительные нервные импульсы от всех внутренних органов или частей тела, и она может управлять их работой. Через кору больших полушарий происходит замыкание условных рефлексов, посредством которых организм постоянно, в течение всей жизни очень точно приспосабливается к изменчивым условиям существования, к окружающей среде.

второе высшее образование "психология" в формате MBA

предмет: Анатомия и эволюция нервной системы человека.

Методичка "Анатомия центральной нервной системы"

1) Введение
2)


Введение


Курс «Анатомия центральной нервной системы» предназначен для создания у студентов необходимой основы последующего изучения психологии. В результате его освоения будущие психологи должны четко уяснить неразрывную взаимосвязь структуры и функции, а также знать основные морфологические субстраты, ответственные за проявление психологических явлений. Таким образом, основная задача курса «Анатомия центральной нервной системы» — это формирование целостного представления о строении материальной основы психики — центральной нервной системы.

При написании данного курса авторы применяли несколько подходов: эволюционный, морфофизиологический и интегративный. Первый подход рассматривает мозг человека как продукт двоякого развития — в филогенезе и онтогенезе, причем оба эти процесса связаны воедино в биогенетическом законе. Эволюционный подход способствует созданию естественнонаучной основы для формирования у студентов целостного мировоззрения, которое позволяет понять феномены специфического поведения людей в обществе.

Морфофизиологический подход предполагает достаточно четкую детерминированную связь между нервными структурами и психическими функциями, за которые эти структуры отвечают, причем это касается не только таких простейших психических явлений, какими являются ощущения, но и более сложных психических феноменов: памяти, мышления и речи.

Третьим методическим приемом в этой работе является интегративный подход, показывающий организацию человека в виде сложной, иерархически устроенной, саморегулирующейся системы, которая обладает большими адаптационными возможностями благодаря накоплению повой информации центральной нервной системой. Изложение материала этого курса строится по принципу целостности и иерархичности нервной системы, начиная с клеточного уровня и завершая наиболее сложным этажом центральной нервной системы — корой больших полушарий, которая является материальным субстратом психики человека. Учебно-методический комплекс составлен на основе требований Государственного образовательного стандарта высшего профессионального образования. Студент, изучивший курс «Анатомия центральной нервной системы», должен иметь:

1) общее представление о:
. процессах филогенеза и онтогенеза центральной нервной системы человека на основе эволюционного подхода;
. методах, которые используются для изучения анатомии человека на всех уровнях — от микроскопического до макроскопического;
. микроструктуре нервной ткани и строении нервных клеток;
. функциях основных нервных центров головного мозга;
2) конкретные знания:
. структурной организации спинного мозга;
. основных отделов головного мозга;
. основных проводящих путей центральной нервной системы;
. черепно-мозговых нервов;
. сравнительной структурной организации соматической и вегетативной нервной системы;
3) умения:
. находить различные анатомические структуры на изображениях срезов головного мозга в анатомическом атласе;
. самому схематично нарисовать основные срезы головного мозга;
. указать порядок расположения черепных нервов;
. изобразить схему организации спинального соматического и вегетативного рефлекса.


Развитие ЦНС в фило- и онтогенезе


3.1. Филогенез центральной нервной системы


Под филогенезом (греч. рhylon — род, племя + genesis — зарождение, происхождение) понимается процесс исторического развития живой природы, отдельных групп организмов или органов и систем. Научной основой представлений о филогенезе является эволюционная теория. Схематически филогенез животных изображают в виде «филогенетического древа», отражающего пути эволюции организмов и родственные связи между ними (ствол соответствует примитивным формам организмов, ветви — всем последующим формам).

Впервые нервная система появляется у кишечнополостных животных. Нервная система кишечнополостных является диффузной , т. е. у них отсутствуют выраженные скопления нервных клеток, образующих более-менее равномерную сеть. Такая нервная система может организовывать только простые движения — например, гидра сжимается в комочек, если к ней прикоснуться иголкой. У медуз, в связи с их подвижным образом жизни, ожилась более совершенная нервная система: имеется скопление нервных клеток в виде кольца по краю зонтика. Также у медуз есть отолитовый аппарат (орган равновесия) и имеется функциональное разделение нейронов на две группы, отвечающие за плавательную и пищевую активность. Например, у медузы Аurelia под покровным эпителием находится сеть из мультиполярных нейронов, связанная с сенсорными клетками на поверхности и управляющая движениями при захвате пищи. Независимо от нее функционирует вторая нервная сеть, биполярные нейроны которой связаны с кольцевой и радиальной мускулатурой и вызывают ее ритмические сокращения при плавании.

У более высокоорганизованных животных нервные клетки располагаются более тесно друг к другу, образуя нервные узлы. Благодаря синаптическим контактам нервных клеток, образующих узлы, в них становится возможна обработка поступающей информации и выработка команд, поступающих к рабочим органам: железам и мышцам.

У плоских червей возникает билатеральная симметрия, соответственно, у них дифференцируется головной и хвостовой конец тела. К головному концу смещаются нервные элементы и органы чувств: тактильные рецепторы и хсморецепторы, а у свободноживущих червей — и световые рецепторы. Внешне нервная система этих животных напоминает лестницу: имеется несколько крупных ганглиев в головном конце тела и два (или больше) нервных ствола, соединенных друг с другом перемычками. Такая нервная система относится к лестничному типу.

У кольчатых червей обнаруживается симметричное строение тела и нервной системы, которая представлена двумя цепочками узлов, состоящих из нервных клеток и нервных волокон. У них впервые в процессе эволюции появляется нервная система узлового типа. В брюшной области узлы одной стороны соединяются с узлами другой стороны каждого сегмента, таким образом образуются своеобразные автономные «микропроцессоры», управляющие органами одного сегмента. Такое строение нервной системы обеспечивает высокую надежность жизнедеятельности кольчатых червей, что позволяет им сохранять жизнь даже при расчленении тела червя на несколько частей. Мощный надглоточный узел, соединенный с подглоточным узлом, а через него и с брюшными узлами, свидетельствует о зарождении центральной нервной системы у этих животных.

Узловая нервная система в процессе эволюции получила дальнейшее развитие у моллюсков и членистоногих. У моллюсков тело напоминает мышечный мешок, в котором обнаруживается нервных волокон, берущих начало от трех пар узлов. Цельные узлы являются сложным аппаратом и достигают наивысшего развития у головоногих моллюсков (кальмаров, осьминогов). Нервная система членистоногих (особенно насекомых) развивалась в направлении усложнения и усовершенствования различных функций. У некоторых видов насекомых (перепончатокрылых) не только нервная система, но и органы чувств достигают вершины развития среди беспозвоночных животных. Таким образом, нервная системау беспозвоночных способна не только обеспечивать различной сложности безусловно-рефлекторные двигательные акты, но и являться основой для некоторых форм научения.

У хордовых животных появляется «трубчатая» нервная система , образованная клетками эктодермы, которые формируют медуллярную трубку. Первоначально (у ланцетника) она не разделялась на головной и спинной мозг, но уже у круглоротых рыб это деление отмечается вполне отчетливо. Но мере эволюционного развития головной мозг все больше развивался, а внутри самого головного мозга все большее развитие получали отделы переднего мозга. Выход на сушу дал новый толчок и к развитию органов чувств, и к совершенствованию нервной системы у земноводных, а у рептилий впервые появляется кора конечного мозга. У птиц кора конечного мозга развита еще слабо, однако значительных размеров достигает полосатое тело, являющееся материальной основой высших форм нервной деятельности птиц. Наивысшего развития кора головного мозга и сам мозг получают у млекопитающих. Основное направление эволюции ЦНС этого класса заключается в усложнении межнейройных связей и увеличении количества нейронов. Наиболее сложные связи формируются в коре больших полушарий, которая, в свою очередь, дифференцируется по выполняемым функциям.

3.2. Онтогенез центральной нервной системы

Онтогенез (оntogenesis; греч. оп, ontos — сущее + genesis — зарождение, происхождение) — процесс индивидуального развития организма от момента его зарождения (зачатия) до смерти. В основе онтогенеза лежит цепь строго определенных последовательных биохимических, физиологических и морфологических изменений, специфичных для каждого из периодов индивидуального развития организма конкретного вида. В соответствии с этими изменениями выделяют:
эмбриональный (зародышевый, или пренатальный) - время от оплодотворения до рождения
постэмбриональный (послезародышевый, или постнатальный) периоды - от рождения до смерти:

Развитие ЦНС человека (по Ф.Булум А. Луйзерсонин и Л. Хофстендер, 1988):

Согласно биогенетическому закону, в онтогенезе нервная система повторяет этапы филогенеза. Вначале происходит диффереицировка зародышевых листков, затем из клеток эктодермалыюго зародышевого листка образуется мозговая, или медуллярная, пластинка. Ее края в результате неравномерного размножения ее клеток сближаются, а центральная часть, наоборот, погружается в тело зародыша. Затем края пластинки смыкаются — образуется медуллярная трубка:

Образование нервной трубки из эктодермы:

В дальнейшем из задней ее части, отстающей в росте, образуется спинной мозг, из передней, развивающейся более интенсивно, — головной мозг. Канал медуллярной трубки превращается в центральный канал спинного мозга и желудочки головного мозга.

Нервная трубка представляет собой эмбриональный зачаток всей нервной системы человека. Из нее в дальнейшем формируется головной и спинной мозг, а также периферические отделы нервной системы. При смыкании нервного желобка по бокам в области его приподнятых краев (нервных валиков) с каждой стороны выделяется группа клеток, которая по мере обособления нервной трубки от кожной эктодермы образует между нервными валиками и эктодермой сплошной слой — ганглиозную пластинку. Последняя служит исходным материалом для клеток чувствительных нервных узлов (сигнальных и краниальных) и узлов вегетативной нервной системы, иннервирующей внутренние органы.

Нервная трубка на ранней стадии своего развития состоит из одного слоя клеток цилиндрической формы, которые в дальнейшем интенсивно размножаются митозом и количество их увеличивается; в результате стенка нервной трубки утолщается. В этой стадии развития в ней можно выделить три слоя: внутренний эпендимный слой, характеризующийся активным митотическим делением клеток; средний слой - мантийный (плащевой), клеточный состав которого пополняется как за счет митотического деления клеток этого слоя, так и путем перемещения их из внутреннего эпендимного слоя; наружный слой, называемый краевой вуалью. Последний слой образуется отростками клеток двух предыдущих слоев. В дальнейшем клетки внутреннего слоя превращаются в эпендимоциты, выстилающие центральный канал спинного мозга. Клеточные элементы мантийного слоя дифференцируются в двух направлениях: часть их превращается в нейроны, другая часть — в глиальные клетки:

Схема дифференцировки нервной системы человека :

Вследствие интенсивного развития передней части медуллярной трубки образуются мозговые пузыри: вначале появляются два пузыря, затем задний пузырь делится еще на два. Образовавшиеся три пузыря дают начало переднему, среднему и ромбовидному мозгу. Впоследствии из переднего пузыря развиваются два пузыря, дающие начало конечному и промежуточному мозгу. А задний пузырь, в свою очередь, делится на два пузыря, из которых образуется задний мозг и продолговатый, или добавочный, мозг.

Таким образом, в результате деления нервной трубки и образования пяти мозговых пузырей с последующим их развитием формируются следующие отделы нервной системы:
передний мозг, состоящий из конечного и промежуточного мозга;
ствол мозга, включающий в себя ромбовидный и средний мозг.

Конечный, или большой, мозг представлен двумя полушариями (в него входят кора большого мозга, белое вещество, обонятельный мозг, базальные ядра).
К промежуточному мозгу относят эпиталамус, передний и задний тадамус, метапамус, гипоталамус.
Ромбовидный мозг состоит из продолговатого мозга и заднего, включающего в себя мост и мозжечок, средний мозг — из ножек мозга, покрышки и крышки среднего мозга. Из недифференцированной части медуллярной трубки развивается спинной мозг.
Полость конечного мозга образуют боковые желудочки, полость промежуточного мозга — III желудочек, среднего мозга - водопровод среднего мозга (сильвиев водопровод), ромбовидного мозга — IV желудочек и спинного мозга — центральный канал.

В дальнейшем идет быстрое развитие всей центральной нервной системы, но наиболее активно развивается конечный мозг, который начинает делиться продольной щелью большого мозга на два полушария. Затем на поверхности каждого из них появляются борозды, определяющие будущие доли и извилины.

На 4-м месяце развития плода человека появляется поперечная щель большого мозга, на 6-м — центральная борозда и другие главные борозды, в последующие месяцы — второстепенные и после рождения — самые мелкие борозды.

В процессе развития нервной системы важную роль играет миелинизация нервных волокон, в результате которой нервные волокна покрываются защитным слоем миелина и значительно вырастает скорость проведения нервных импульсов. К концу 4-го месяца внутриутробного развития миелин выявляется в нервных волокнах, составляющих восходящие, или афферентные (чувствительные), системы боковых канатиков спинного мозга, тогда как в волокнах нисходящих, или эфферентных (двигательных), систем миелин обнаруживается на 6-м месяце. Приблизительно в это же время наступает миелинизация нервных волокон задних канатиков. Миелинизация нервных волокон корково-спинномозговых путей начинается на последнем месяце внутриутробной жизни и продолжается в течение года после рождения. Это свидетельствуются о том, что процесс миелинизации нервных волокон распространяется вначале на филогенетически более древние, а затем — на более молодые структуры. От последовательности миелинизации определенных нервных структур зависит очередность формирования их функций. Формирование функции и также зависит и от дифференциации клеточных элементов и их постепенного созревания, которое длится в течение первого десятилетия.

В постнатальном периоде постепенно происходит окончательное созревание всей нервной системы, в частности ее самого сложного отдела — коры большого мозга, играющей особую роль в мозговых механизмах условно-рефлекторной деятельности, формирующейся с первых дней жизни. Еще один важный этап в онтогенезе это период полового созревания, когда проходит и половая дифференцировка мозга.

В течение всей жизни человека мозг активно изменяется, приспосабливаясь к условиям внешней и внутренней среды, часть этих изменений носит генетически запрограммированный характер, часть является относительно свободной реакцией на условия существования. Онтогенез нервноной системы заканчивается только со смертью человека.

Впервые нервные клетки появляются у кишечнополостных. Они образуют в эктодерме примитивную диффузную нервную систему рассеянное нервное сплетение или нервную сеть. В энтодерме есть отдельные нервные клетки. Наличие нервной системы позволяет гидре осуществлять простые рефлексы. Гидра реагирует на механическое раздражение, температуру, наличие в воде химических веществ и на ряд других факторов внешней среды.




Решётчатая нервная система У плоских червей нервная система образована двумя нервными стволами, соединёнными между собой тяжами. Скопления нервных клеток в головном отделе образуют парные головные нервные узлы. От нервных стволов отходят нервные ответвления к кожным покровам и системам органов. У круглых червей уже встречается окологлоточное нервное кольцо, образуемое за счет слияния головных нервных узлов.


У кольчатых червей развивается нервная цепочка за счет образования парных нервных узлов (ганглиев) в сегментах тела. В головном отделе червя располагаются два больших ганглия соединённых друг с другом кольцевыми перемычками, образующими окологлоточное нервное кольцо.




У членистоногих отмечается дальнейшая концентрация нервных клеток, в результате чего обособляются нервные центры, развиваются органы чувств. Общий план её организации соответствует брюшной нервной цепочке, однако имеется ряд особенностей: У сенокосцев и клещей все нервные узлы сливаются, образуя кольцо вокруг пищевода, однако у скорпионов сохраняется хорошо выраженная брюшная нервная цепочка. 1a - надглоточный нервный узел; 1b - подглоточный нервный узел; 2 - грудные нервные узлы; 3 - брюшная нервная цепочка. 1a 1b3 1a




У позвоночных нервная система представлена: Нервная система Центральная нервная система Головной мозг Спинной мозг Периферическая нервная система Нервы Спинной мозг принимает участие в двигательных и вегетативных рефлексах таких как пищевые, дыхательные, мочеиспускания, половые и т.д. Рефлекторная функция спинного мозга находится под контролем головного мозга.


Головной мозг рыб защищён костями черепа и состоит из пяти отделов: переднего мозга, промежуточного мозга, среднего мозга, мозжечка и продолговатого мозга. По сравнению с ланцетником и круглоротыми, у рыб развиваются органы чувств: глаза, органы обоняния, внутреннее ухо, боковая линия и т.д., что позволяет рыбам хорошо ориентироваться в окружающей среде.


У земноводных в связи с выходом на сушу нервная система характеризуется более сложным строением по сравнению с рыбами, в частности, большим развитием и полным разделением мозга на полушария. Более совершенное зрение. Наряду с внутренним ухом, развитым у рыб, у них появляется среднее ухо. Большего развития достигает орган обоняния. Передний мозг Средний мозг Мозжечок Промежуточный мозг Продолговатый мозг РыбаАмфибия


У рептилий особенностью нервной системы является прогрессивное развитие всех отделов головного мозга, характерное для наземных животных. В частности, значительно увеличены полушария мозга. На поверхности полушарий впервые появляется кора, увеличивается мозжечок. Еще в большей мере развиваются органы чувств. Продолговатый мозг Средний мозг Мозжечок Промежуточный мозг РептилияАмфибия Передний мозг










Эволюция нервной системы позвоночных 1.Головной мозг; 2.Спинной мозг; 3.Нервы.


В которой наиболее сложными являются органы зрения и слуха. В ходе эволюции зрение впервые появляется у членистоногих. У них оно представлено парой сложных фасеточных глаз, разделенных на Насекомые близоруки область точного зрения у них не превышает 12 см. Зато они отлично видят движение и цвет, в том числе ультрафиолет. Высокого уровня достигает развитие сенсорной системы, У насекомых клетки, воспринимающие запах, расположены преимущественно на усиках. Каждый усик может двигаться, так что запах насекомые воспринимают вместе с пространством и направлением, для них это одно единое чувство - объемный запах. простые глазки, каждый из которых может различать лишь часть объекта. Насекомые обладают цветовым и объемным зрением.


Дальнейшее совершенствование органа зрения характерно для рыб и земноводных. У рептилий уже отмечается возможность изменения кривизны хрусталика, что ведет к улучшению зрения. Важной особенностью зрения птиц является то, что сетчатка глаза способна улавливать не только цветовую модель, состоящую из красного, зелёного и синего цветов, но также лучи ближнего ультрафиолета. Веки неподвижны, мигание осуществляется с помощью особой перепонки - «третьего века». У многих водных птиц перепонка полностью закрывает глаза и под водой выполняет функцию контактной линзы. Глаз птицы


В отличие от птиц, каждый глаз которых видит предметы отдельно, млекопитающие обладают бинокулярным зрением, т.е. способны смотреть на предмет обоими глазами, что позволяет определить размеры предмета и расстояние до него. Строение глаза лошади Глаз примата


У рыб хорошо развито внутреннее ухо. У земноводных в среднем ухе содержится слуховая косточка, а на поверхности кожи заметна барабанная перепонка т.е. в связи с выходом на сушу развивается внутреннее и среднее ухо. У рептилий увеличиваетсяулитка внутреннего уха. В органах слуха млекопитающих кроме среднего и внутреннего уха, имеется наружный слуховой проход и ушная раковина, т.е. орган слуха состоит из трёх частей. т.е. орган слуха состоит из трёх частей. Орган слуха человека

Появление и развитие нервной системы у животных обеспечило выполнение двух основных функций:

Проведение раздражения из точки А в точку Б организма,

Интеграции поведения (организм функционирует как целое).

Впервые нервная система появляется у кишечнополостных. Далее в своем развитии она проходит несколько этапов. Первоначальным, наиболее примитивным типом нервной системы является диффузная нервная система. Для данного типа нервной системы характерен недифференцированный способ реагирования на раздражение: реакции организма не зависят от характера, интенсивности раздражения (или зависят очень слабо). На сегодняшний день этот способ реагирования, например, встречается у медузы.

На следующем этапе развития нервной системы наблюдается уже процесс централизации нервной системы (у червей). Процесс эволюции дальше идет уже по двум расходящимся, независимым линиям:

К высшим беспозвоночным,

К позвоночным.

Уже на ранних этапах эволюции происходит образование узлов в нервной системе. Узлы из нервных клеток обеспечивают образование более сложных и скорых реакций на изменения в окружающей среде. Этот тип нервной системы отчетливо представлен у кольчатых червей.

Но уже у самих червей начинает выделяться головной узел, приобретающий господствующее, доминирующее значение. У животных, обладающих узловой нервной системой, впервые появляется реакция, имеющая характер рефлекса.

У высших беспозвоночных (членистоногих - пчел, муравьев) головной мозг приобретает уже весьма сложное строение. В нем дифференцируются отдельные части (так называемые грибовидные тельца), в которых происходят довольно сложные процессы переключения. Мозг - как основной нервный узел - настолько усложняется, что включает в себя как бы другие, подузлы. Такая относительно сложная организация нервной системы обеспечивает довольно сложные формы поведения и психической деятельности. Хотя поведение и носит почти исключительно инстинктивный характер, тем не менее стороннему наблюдателю может даже показаться, что насекомые обладают зачатками разума.

В развитии нервной системы беспозвоночных (как и позвоночных тоже) прослеживаются следующие три прогрессирующие тенденции:

Централизация,

Цефализация,

Иерархизация,

Специализация.

Централизация нервной системы - сосредоточение нервных элементов в определенных местах, образование ганглиев, в которых скапливается, централизуется множество ганглиозных нервных клеток. Цефализация нервной системы - преимущественное сосредоточение нервных клеток на головном конце тела. Иерархизация нервной системы - подчинение одних участков или частей нервной системы другим.

Если у животных с самой примитивной нервной системой наблюдается диффузная реакция (иногда называемая массовое действие - mass action), то затем появляется специализация реакций: выделяются местные специализированные реакции отдельных частей тела. Если представить диффузную реакцию нервной системы современного человека, то будет, видимо, что-то вроде эпилептического припадка. Развитая специализация обеспечивает высокий уровень приспособления животного к окружающей среде. Кстати говоря, наличие разного рода орудий труда, инструментов в руках современного человека обеспечивает почти бесконечные возможности для взаимодействия с природой. Также специализация, очевидно, обеспечивает сохранение энергии, что тоже очень важно.

Если сравнивать развитие нервной системы у высших беспозвоночных и позвоночных животных, то перечисленные тенденции приобретают еще более глубокое и специфическое значение во втором случае.

У позвоночных наблюдается резкая дифференциация нервной системы на периферическую и центральную. И прогресс в развитии позвоночных осуществляется главным образом за счет развития именно центральной нервной системы. При этом наиболее существенным в развитии центральной нервной системы является эволюция строения и функций головного мозга. В головном мозге позвоночных дифференцируется мозговой ствол и большие полушария. Большие полушария развиваются в процессе эволюции из конечного мозга.

Наиболее характерным и знаковым для развития мозга млекопитающих является появление коры - неокортекса. Для приматов, и особенно для человека, кора занимает господствующее положение в иерархии.

Энцефализация у позвоночных принимает новый характер: нервные функции не просто передаются в головной мозг, но еще и кортикализуются (то есть передаются в кору). С перемещением функционального управления вообще связано и перемещение психических функций. Они в ходе развития перемещаются к передним высшим отделам нервной системы. Функция зрения, связанная сначала со зрительной долей среднего мозга, перемещается в наружное коленчатое тело (подкорка) и в затылочную долю большого мозга. Функция слуха перемещается из слухового бугорка продолговатого мозга и заднего четверохолмия во внутреннее коленчатое тело (подкорка) и в височную долю полушарий.

Кортикализация функций заключается именно в переходе функционального управления и специально психических функций по направлению к коре - высшему в иерархии отделу нервной системы.

Большое значение для эволюции нервной системы имело появление и развитие дистантрецепторов, то есть тех рецепторов, которые действуют на расстоянии. Непосредственно дистантрецепторы воспринимают звуковые и световые волны, и по ним уже распознается источник этих волн. Дистантрецепторы не возникли сразу, они выдифференцировавшихся из контактрецепторов, непосредственно чувствующих объект. Предпосылкой для эволюции контактрецепторов в дистантрецепторы стало постепенно снижение порогов чувствительности первых (то есть повышение чувствительности). Так, например, тактильная чувствительность преобразовалась в слуховую через обретение способности чувствовать колебания. Современный человек, кстати, не лишен этой способности: кожей ощущать низкочастотные колебания.

Развитие дистантных рецепторов сильно увеличило возможность отображения действительности, создало предпосылку для развития более совершенно организованных форм поведения. Сильно развилось восприятие, оно теперь получило способность к глубокому, трехмерному наблюдению и пониманию пространства. Вместе с таким развитием восприятия кардинально изменилось построение движений.