Пространственная (третичная) обработка информации. Радиолокационной информации Третичная обработка радиолокационной информации

Системы управления боевыми действиями авиации, кроме рассмотренных выше задач по обработке информации, поступающей от одной РЛС, решают еще одну задачу, которая связана с объединением информации о целях, полученных от нескольких РЛС или первичных постов обработки РЛИ, и созданием общей картины воздушной обстановки.

Обработку РЛИ, поступающей от нескольких источников, условились называть третичной обработкой информации (ТОИ).

В виду того, что зоны обзора РЛС или зоны ответственности постов обычно перекрываются, сведения об одной и той же цели могут поступать одновременно от нескольких станций. В идеальном случае такие отметки должны накладываться одна на другую. Однако на практике этого ненаблюдается из-за систематических и случайных ошибок в измерении координат, различного времени локации, а также из-за ошибок пересчета координат между точками стояния источника и приемника информации.

Главной задачей третичной обработки является решение вопроса,

сколько целей находится в действительности в зоне ответственности. Для решения этой задачи необходимо выполнить следующие операции:

Произвести сбор донесений от источников;

Привести отметки к единой системе координат и единому времени отсчета;

Установить принадлежность отметок к целям, т.е. решить задачу отождествления отметок;

Выполнить укрупнение информации.

Для решения этих задач используются все характеристики целей. Устройства третичной обработки реализуются на специализированных ЭВМ с полной автоматизацией всех выполняемых операций. Однако иногда для упрощения автоматических устройств некоторые операции ТОИ могут производиться по командам и с участием оператора. В частности, таким образом выполняются операции отождествления и укрупнения.

Третичная обработка является завершающим этапом получения информации о воздушной обстановке.

Донесением о целях принято называть информацию, содержащую сведения о местоположении целей, об их характеристиках, выдаваемую от источников по каналам связи для ее дальнейшей обработки и использования.

Задача сбора донесений заключается в том, чтобы принять возможно больше информации при минимальных потерях.

Каждое поступающее на вход донесение должно быть обработано, на что требуется некоторое время. Пусть в момент поступления донесения производится обработка предыдущего донесения. В этом случае поступившее донесение может либо покинуть систему не обработанным, либо ждать своей очереди на обслуживание, пока система не освободится, либо ожидать обработки строго ограниченное время. В соответствии с этим все системы массового обслуживания разделяются на системы с отказами, системы с ожиданием и системы с ограниченным ожиданием (смешанного типа). На практике получили распространение системы смешанного типа с временем ожидания, выбранным из условия наилучшей обработки.

Координаты целей измеряются в системе координат обнаружившейих РЛС, поэтому при передаче данных на пункт ТОИ необходимо пересчитать их к точке стояния приемника информации . В качестве единой системы координат могут использоваться геодезическая, полярная или прямоугольная системы координат. Наиболее точной является геодезическая, однако расчеты в ней сложны. Поэтому она используется лишь тогда, когда источники и приемники информации находятся набольших расстояниях друг от друга и велик фактор кривизны Земли. В остальных случаях пользуются полярной или прямоугольной системами координат с поправкой по высоте. Расчеты в этих системах достаточнопросты и приемлемы для решения целого ряда практических задач.

В АСУ передача координат целей обычно осуществляется в прямоугольной системе координат. На пункте обработки также используется прямоугольная система. Следовательно, задача сводится кпреобразованию прямоугольных координат целей относительно точкистояния источника в прямоугольные координаты относительно точкистояния пункта обработки.

К единому времени отсчета приводятся отметки, полученные напункте ТОИ от разных источников. Единое время необходимо для того, чтобы определить положение обрабатываемых отметок по состоянию накакой-то один момент времени. Эта операция значительно облегчает задачу отождествления отметок.

Координаты отметок приводятся к единому времени путем определения для каждой отметки времени экстраполяции относительнозаданного момента сравнения. Учитывая сравнительно высокий темп обновления информации, целесообразно при экстраполяции приниматьгипотезу равномерного и прямолинейного изменения координат.

Все источники РЛИ обрабатывают информацию автономно инезависимо друг от друга. За счет перекрытия зон ответственности в составе донесений могут быть дублирующие донесения, полученные отнескольких источников по одной и той же цели.

В процессе отождествления отметок целей вырабатывается решение, устанавливающее:

Сколько целей имеется в действительности, если донесения о нихпоступают от нескольких источников;

Как распределяются поступившие донесения по целям.

Обычно отождествление выполняется в два этапа. Сначала производится грубое отождествление или сравнение отметок, а затем проводится распределение отметок, позволяющее принять более точное решение на отождествление.

В основе этапа сравнения лежит предположение, что донесения ободной и той же цели должны содержать одинаковые характеристики. В силу этого решение о тождественности отметок принимают на основании и сравнения характеристик. Однако в действительности из-за различных ошибок полного совпадения характеристик не бывает. В результате возникает неопределенность, выражаемая двумя конкурирующими гипотезами:

1. Гипотеза предполагает, что отметки от одной и той же цели,

хотя произошло несовпадение.

2. Гипотеза предполагает, что отметки от разных целей, поэтомупроизошло несовпадение.

Решение на выбор той или иной гипотезы принимается на основанииоценки величины несовпадения и использования критерия минимумаошибки принятия решения.

На этапе распределения для группирования отметок по отдельнымцелям используются признаки их принадлежности к источникаминформации и нумерации целей в системе этих источников. Правилалогического группирования отметок в соответствии с принадлежностьюдонесений о целях к источникам информации формулируютсяследующим образом.

1. Если в области допустимых отклонений получены отметки отодного и того же источника, то число целей равно числу отметок, так какодна станция в один и тот же момент времени не может выдавать от

одной цели несколько отметок.

2. Если в области допустимых отклонений от каждого источникаполучено по одной отметке, то считается, что эти отметки относятся кодной и той же цели.

3. Если от каждой станции получено по равному числу отметок, тоочевидно, что число целей равно числу отметок, полученных от однойстанции, ибо маловероятно, чтобы в пределах небольшой области станцияобнаруживала только свои цели и не обнаруживала цель, которуюнаблюдает соседняя станция.

4. Если от нескольких источников поступило неодинаковоеколичество отметок, принимается, что источник, от которого полученонаибольшее количество отметок, дает наиболее вероятную обстановку.При этом общее количество целей определяется числом отметок,принятых от указанного источника.

Таким образом, обработка донесений в группе состоит вгруппировании отметок от нескольких источников к одной цели. Этазадача решается сравнительно просто при использовании первого ивторого правила и значительно труднее при применении третьего ичетвертого.

По гипотезе третьего правила имеем две цели, к каждой из которыхотносится по одному донесению от каждого источника. Необходимоопределить, какие пары отметок относятся к каждой цели. Наиболееправдоподобный вариант выбирается в результате сравнения суммквадратов расстояний между отметками. Принимается та комбинация, длякоторой эта сумма минимальна.

Приведенные правила сравнения и распределения отметок неединственные, и в зависимости от требуемой точности могут бытьусложнены или упрощены.

После отождествления сведения о цели выражаются группой отметок,полученных от нескольких источников. Для формирования одной отметкис более точными характеристиками координаты и параметры траекторииусредняются.

Простейший способ усреднения заключается в том, что вычисляетсясреднее арифметическое координат. Этот способ достаточно прост, но онне учитывает точностных характеристик источников информации. Болееправильным является усреднение отметок целей с учетом коэффициентавеса отметок, а коэффициент выбирается в зависимости от точностиисточника. И наконец, в качестве усредненных можно взять ординатыотметки, полученные от одного источника, если имеются данные, чтоэтот источник выдает наиболее точную информацию.

Укрупнение (группирование) отметок целей проводится в тех пунктахобработки, где не требуется информация по каждой цели или жеплотность поступления отметок от целей оказывается выше рассчитаннойпропускной способности. Обычно группирование производится навысших инстанциях системы управления.

Группирование осуществляется теми же способами, что иотождествление, и ведется по признаку близости координатных описанийгруппируемых объектов. Для этого формируется строб по темкоординатам, которые назначаются как характерные для группы целей.Координаты центра строба распространяются на всю группу. Обычноделается так, что центр строба совпадает с отметкой головной цели вгруппе. Размеры строба определяются, исходя их навигационных итактических требований. Обычно используется полуавтоматическийметод укрупнения, который включает в себя следующие основные этапы:

1. Выделение компактных групп целей на основе близости координатx , y , H . Оператор визуально определяет компактную группу целей покоординатам, выделяет головную цель, назначает один из стробовукрупнения и вводит в ЭВМ номер строба и головной цели. На основеэтой информации ЭВМ завершает процесс выделения компактнойгруппы.

2. Селекция внутри выделенных групп по скорости. Цель остается всоставе укрупненной цели, если:

где – составляющие скорости головной цели;– порог селекциипо скорости.

3. Определение характеристик укрупненной цели. Укрупненной целиприсваивается количественный состав, и формируется обобщенныйпризнак действия.

4. Корректировка решения оператора. Ввиду того что обстановка ввоздухе меняется, имеется возможность скорректировать данныеукрупненной цели путем ее укрупнения, разукрупнения, отукрупненияили приукрупнения.

5. Сопровождение укрупненной цели. Эта операция осуществляетсяавтоматически ЭВМ. При этом производится корректировка координат,обеспечивается выбор головной цели при исчезновении информации остарой головной цели.

Таким образом, в процессе ТОИ производится сбор донесений отисточников, приведение отметок к единой системе координат и единомувремени отсчета, установление принадлежности отметок к целям(отождествление отметок) и выполнение укрупнения информации.

Заключение

1. Операции, производимые при первичной обработке, может производитьРЛС самостоятельно.

2. Если при первичной обработке из смеси сигнала с шумом на основе статистического различия структуры сигнала и шума выделяется полезная информация, то вторичная обработка, используя различия в закономерностях появления ложных отметок и отметок от целей, должна обеспечить выделение траекторий движущихся целей.

3. Траектория движения цели представляется в виде последовательности полиноминальных участков с различными коэффициентами и степенями полиномов, т.е. система обработки должна перестраиваться в соответствии схарактером движения каждой цели.

4. В процессе ТОИ производится сбор донесений от источников, приведение отметок к единой системе координат и единому времени отсчета, установление принадлежности отметок к целям (отождествлениеотметок) и выполнение укрупнения информации.

На самоподготовке необходимо подготовиться к контрольной работе последующим вопросам:

1. Назначение и содержание первичной обработки радиолокационной информации.

2. Назначение и содержание вторичной обработки радиолокационной информации.

3. Определение параметров движения целей в процессе вторичнойобработки радиолокационной информации.

4. Экстраполяция отметок в процессе вторичной обработки радиолокационной информации.

5. Продолжение траектории движения в процессе цели вторичной обработки радиолокационной информации.

6. Назначение и содержание третичной обработки радиолокационной информации.

7. Сбор донесений в процессе цели третичной обработки радиолокационной информации.

8. Приведение отметок целей к единой системе координат и единому времени отсчета в процессе цели третичной обработки радиолокационной информации.

9. Отождествление отметок целей в процессе цели третичной обработки радиолокационной информации.

10. Укрупнение информации в процессе ТОИ.

Обработка радиолокационной информации - процесс приведения получаемой с РЛС информации в пригодный для дальнейшей передачи вид.

Изначально обработка радиолокационной информации проводилась сидящим за индикатором РЛС солдатом (оператором сопровождения). В настоящее время она проводится автоматически и полуавтоматически, повышая производительность труда оператора.

Первичная обработка

Суть: выделение целей на фоне шумов и помех, опознавание «свой-чужой»

Вход: сигнал РЛС.

Выход: положение целей, их угловой размер, азимут и расстояние.

Проводится: устройством первичной обработки, находящимся в РЛС; ранее - пунктами обработки радиолокационной информации.

Вторичная обработка

Суть: отождествление целей в течение нескольких циклов сканирования РЛС; вычисление направления и скорости; борьба с ошибками первичной обработки - двойными целями, случайными всплесками и временными пропаданиями целей.

Вход: цели, полученные первичной обработкой.

Проводится: оператором сопровождения вручную; пунктом обработки радиолокационной информации (на уровне радиолокационной роты) полу- и автоматически.

Третичная обработка

Суть: сопоставление информации, полученной с нескольких источников.

Вход: трассы целей, полученные в результате вторичной обработки; координаты РЛС.

Выход: трассы целей, полученные с учётом передачи цели с одной РЛС другой, точности разных источников и т. д.

Проводится: на уровне радиотехнического батальона и выше; вручную (планшетистом), полуавтоматически или автоматически АСУ.


Wikimedia Foundation . 2010 .

Смотреть что такое "Обработка радиолокационной информации" в других словарях:

    ОРЛИ - обработка радиолокационной информации связь … Словарь сокращений и аббревиатур

    В Википедии есть статьи о других людях с такой фамилией, см. Бененсон. Залман Михайлович Бененсон Дата рождения … Википедия

    У этого термина существуют и другие значения, см. Искра. Координаты: 47°50′16″ с. ш. 35°13′47″ в. д. / 47.837778° с. ш. 35.229722° в. д. … Википедия

    Крылатая противокорабельная ракета П-35 (П-6) - 1964 17 августа 1956 года вышло Постановление СМ CCCH № 1149–592 о начале разработки противокорабельных крылатых ракет П 6 и П 35. Обе ракеты проектировались в ОКБ 52 и мало отличались друг от друга. П 6 предназначалась для подводных… … Военная энциклопедия

    Комплекс мероприятий по получению и обработке данных о действующем или вероятном противнике, его военных ресурсах, боевых возможностях и уязвимости, а также о театре военных действий. Классификация. Современная военная разведка делится на… … Энциклопедия Кольера

    Ракета AIM 120 Тип ракета класса «воздух воздух» … Википедия

    Изучения 3емли, совокупность методов исследования и картирования с летательных аппаратов географической оболочки Земли, присущих ей явлений и объектов природного и культурного ландшафта. Их физические свойства могут регистрироваться с… …

    Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… … Большая советская энциклопедия

    Виктор Филиппович Кравченко Дата рождения: 5 октября 1939(1939 10 05) (73 года) Место рождения: Харьков, Украина, СССР Страна … Википедия

    I Импульсная техника область техники, исследующая, разрабатывающая и применяющая методы и технические средства генерирования (формирования), преобразования и измерения электрических импульсов (см. Импульс электрический). В И. т. также… … Большая советская энциклопедия

Единичные отметки, являющиеся результатом первичной обработ­ки радиолокационной информации, дают лишь приближенные сведения о действительном положении целей. По одиночной отметке нельзя при­нять решение об обнаружении траектории и тем более оценить такие параметры, как скорость, курс, ускорение цели и т.д.

Вторичная обработка информации о воздушной обстановке состо­ит в обнаружении траекторий целей по данным нескольких обзоров станции. Основными ее задачами, кроме того, являются: оценка па­раметров движения целей; вычисление координат текущего и упреж­денного положений целей; привязка вновь полученных отметок к об­наруженным траекториям (трассам).

При вторичной обработке информации используются алгоритмы, полученные методами математической статистики. Обнаружение и оценка параметров движения целей осуществляются на основе различ­ных гипотез о законах движения целей.

Траектории движения аэродинамических целей (самолетов, кры­латых ракет и т.д.) обычно представляются в виде совокупности участников с прямолинейным равномерным движением и участков ма­невра. На всех участках используются полиномиальная модель движе­ния цели.

Считается, что на ограниченном промежутке времени каждая ко­ордината цели изменяется по линейному закону.

Точный закон движения цели в процессе вторичной обработке остается неизвестным. Причиной этого является наличие помех, ко­торыми являются ошибки измерения координат целей РЛС, ложные от­метки и пропуски отметок, случайные флюктуации траекторий относи­тельно генерального курса и др.

В РЛС и АСУ войск ПВО СВ основные задачи вторичной обработки информации решаются приближенными способами с использованием уп­рощенных алгоритмов. Главное требование к таким алгоритмам - это обеспечение необходимой точности сопровождения при минимальном работном времени и минимальной сложности реализации алгоритмов на ЭВМ.

Таким образом, результатом ВОРЛИ является прокладка трассы движения цели. Процесс прокладки трассы обычно выполняется в два этапа: обнаружение траекторий целей и сопровождение траекторий .

Прокладка трассы цели при ВОРЛИ предполагает реализацию следующего алгоритма:

1. Автоматическое обнаружение цели.

2. Завязка трассы (два съема координат цели в соседних периодах обзора РЛС).

3. Вычисление вектора скорости в прямоугольной системе координат:

(3.4)

4. Вычисление положения строба экстраполяции, то есть по результатам определения текущих координат цели вычисление координат области пространства, в которой следует ожидать цель.

5. Отождествление трассы цели.

6. Сброс трассы цели (при отрицательном отождествлении) или сопровождение цели (при положительном отождествлении).



Пункты 1-5 реализуют этап взятия цели на сопровождение, а при условии положительного отождествления трассы цели начинается этап сопровождения.

Выделенные этапы можно пояснить следующим образом.

Предположим, что в зоне обзора станции обнаружена отметка, которая не может быть отнесена ни к одной сопровождаемой траектории (рис 3.8). Она принимается за первую отметку траектории новой цели. В виду того, что за период обзора Т обз цель не может переместиться на большое расстояние, вторую отметку следует ожидать в преде­лах кольца с внутренним R min и внешним R max радиусами, рассчитыва­емыми по каждой из координат по формулам:

, (3.5)

где V min , V mах - минимально и максимально возможные скорости движения сопровождае­мых целей по каждой из координат.


Рис.3.8. Пояснение к процессу завязки трассы цели при ВОРЛИ

При выборе значения скорости V min учитывается, что с ее уве­личением возрастает вероятность необнаружения малоскоростных це­лей (например, вертолетов, аэростатов). В то же время с уменьше­нием V min , в особенности в случаях, когда V min равна нулю, резко увеличивается количество ложных траекторий за счет захвата отра­жений местных предметов. Значение скорости V mах в основном опре­деляется требованиями, предъявляемыми к системе управления зенит­ными комплексами. В окончательных значениях R min и R maх принима­ются во внимание и возможные ошибки обнаружения координат цели радиолокационной станцией. В связи с необходимостью учета большого числа факторов в АСУ предусматривают несколько пар радиусов R min и R max , конкретные значения которых выбираются бое­вым расчетом в зависимости от складывающихся условий (типы сопро­вождаемых целей, позиция РЛС, уровень помех работе станций, точ­ность измерения координат целей и др.).



Кольцо, образованное радиусами R min и R max , имеет площадь S и называется стробом первичного захвата. В очередном обзоре стан­ции в него могут попасть несколько отметок цели, например А 1 ,А 2 ,А 3 . Причем каждая из отметок должна рассматриваться как вторая отметка возможной траектории.

По координатам двух отметок уже можно вычислить составляющие скорости каждой из возможных целей.

Составляющие скорости нужны для расчета ожидаемых (экстраполированных) координат цели в третьем обзоре (на рис. 3.9. экстраполированные положения цели обозначены буквой В ).

Вокруг экстраполированных отметок можно построить новые стробы , которые обычно имеют круговую или прямоугольную форму. Размер стробов определяется в основ­ном исходя из возможных ошибок при экстраполяции и измерении координат отметок и возможным отклонени­ем цели за время Т о от прямолинейного пуска.

Если в какой-либо строб в третьем обзоре попала отметка, то она считается принадлежащей обнаруживаемой траектории. С учетом координат этой отметки уточняются траектории и строятся новые стробы. После выполнения установленного критерия по числу отметок, попавших в последовательно образованных стробов, принимается решение об обнаружении траектории и она передается на сопровождение. Типовыми критериями являются «две из двух», «три из четырех при обязательной второй». Алгоритмы автозахвата по критерию «две из двух» рекомендуется использовать только при работе по низколетящим и баллистическим целям, то есть в условиях острого дефицита времени. В отдельных случаях более выгодным является при­менение алгоритма, основанного на логике «три из четырех при обязательной второй», поскольку он обеспечивает меньшую вероятность захвата ложной траектории. Даль­нейшее увеличение числа анализируемых обзоров нежелательно ввиду возрастания цикла управления АСУ.

Таким образом, в процессе обнаружения траектории выполняются следующие операции: стробирование и селекция отметок в стробе, проверка критерия обнаружения, оценка значений параметров траектории и экстраполяция этих параметров.

Слежение за траекторией цели состоит в последовательной от измерения к измерению привязке к ней вновь полученных отметок и уточнении ее параметров. При автоматическом слежении за траекторией, которое называется автосопровождением, выполняются следующие операции:

Уточнение параметров траектории в процессе привязки новых отметок;

Экстраполяция параметров на момент следующего измерения;

Стробирования зоны возможного положения любых отметок;

Селекция отметок в стробе (при наличии в стробе нескольких отметок).

При попадании в этот строб сопровождения нескольких отметок траектория продолжается по каждой из них. При отсутствии отметки в стробе сопровождения траектория продолжается по соответствующей экстраполированной точке, но очередной строб увеличивается, чтобы учесть возросшие ошибки экстраполяции. Если пропуски отметок в стробах повторяются К раз подряд, траектория прерывается (сбрасывается).

Таким образом, на этапах обнаружения траектории и слежения за ней выполняются фактически одни и те же операции:

Стробирование зоны обнаружения;

Селекция и идентификация отметок в стробе;

Фильтрация и экстраполяция параметров траектории.

В общем случае при принятии решения о сбросе траектории с сопровождения необходимо учитывать не только наличие отметок для ее продолжения, но и ряд других факторов, к которым можно отнести: важность цели; возможности цели изменять свою траекторию в полете; текущие координаты цели; направление ее полета и продолжительность пребывания в зоне обзора РЛС и т.д. Однако учет этих факторов чрезвычайно сложен и не всегда доступен из-за ограниченной производительности вычислительных средств. Поэтому основным критерием при принятии решения о сбросе траектории с сопровождения является появление некоторой пороговой серии Р пропусков отметок в стробах сопровождения. Такой критерий сброса не учитывает индивидуальные особенности каждой траектории, а также не использует информацию о накопленном уровне точности к моменту появления серии пропусков. Единственное существенное его достоинство – простота реализации на ЦВМ соответствующего алгоритма.

§ 3.6. Сбор и обобщение данных о воздушной обстановке (третичная обработка радиолокационной информации)

Данные о воздушной обстановке, поступающие от одного источ­ника, как правило, не знают полной картины о положении и характе­ре действий целей и своих самолетов. Возможности радиолокационной станции по ведению разведки определяются не только ТТХ станции, но и зависят от занимаемой позиции, радиоэлектронного противо­действия противника, технического состояния аппаратуры, уровня подготовленности боевого расчета и других факторов.

Поэтому полное представление о воздушной обстановке можно получить лишь в результате обобщения данных, поступающих от нес­кольких автоматизированных систем РЛС.

Состав и форма представленных данных, поступающих на пункт обработки радиолокационной информации (ПОРИ) в разных системах управления могут су­щественно отличаться.

В этом сообщении наряду с текущими координатами Х,У,Н , со­держится и время локации t л , а также ряд признаков характеризующих цель, точность измерения координат, режимы ра­боты РЛС и системы передачи данных и др.

На ПОРИ производится непосредственно сама третичная обработка радиолокационной информации. Она включает в себя несколько этапов:

Пересчет координат целей и приведение к единой системе координат;

Привязка координат к единому времени;

Отождествление отметок цели;

Усреднение координат.

Обработка поступающих сигналов начинается с распаковки сообщения и записывается в отведенную ему зону памяти оперативного запоминающегося устройства.

Пересчет координат целей в единую систему необходим потому, что каждая РЛС работает в своей системе координат. Началу координат соответствует цент экрана индикатора (точка стояния РЛС).

Пересчет координат позволяет совместить данные нескольких источников и на этой основе решать остальные задачи сообщения обобщенной информации.

Для привязки всех РЛС к единой системе координат приказом старшего начальника назначается условная точка (УТ), относительно которой производится перерасчет точек стояния всех РЛС и ПОРИ (ПУ) (см. рис.3.9). В результате в ЦВС ПОРИ вычисляет координаты целей от­носительно условной точки.

При решении этой задачи ЦВС реализует следующий алгоритм:

Определение координат целей, обнаруженных РЛС 1;

Определение координат целей, обнаруженных РЛС 2;

Определение параллакса ;

Решение системы уравнений векторов.



Рис. 3.9. Пояснение к пересчету координат целей в единую систему

Результатом реализации такого алгоритма являются координаты обнаруженных целей РЛС1 и РЛС2, рассчитанные относительно УТ.

При сборе, обобщении информации о воздушной обстановке в связи с асинхронной работой радиолокационных станций возникает задача приведе­ния данных к единому времени .

При решении этой задачи один источник информации является основным, второй - дополнительным. Каждый источник выдает текущие координаты це­ли (Х,У,Н,V х,V у ). При передаче информации производится задержка данных в каналах связи (t з =0,1-0,01%). Момент поступления информации на ПОРИ t и1 и t и2 фиксируется путем считывания и запоминания показаний электронного счетчика, при этом имеет место запаздывания t зап = t и2 – t и1 . (рис.3.10).

Определение временных интервалов производится относительно импульсов синхронизации ПОРИ.

Чтобы привести данные в единую систему времени производится компен­сация t заn при расчете времени прихода информации от каждой РЛС.


Рис. 3.11. Пояснение к решению задачи отождествления отметок цели

Размер строба отождествления зависит от точности вспомогательного источника информации, наличия пропуска отметок цели, характера движения це­ли (может быть больше, а может быть меньше радиусом).

Далее производится проверка условия попадания целей других источников в эти стробы отожествления. При условии попадания отметки со второй (не основной) станции в строб отожествления, данные этих целей в ЦВМ АСУ усредняются и выдаются на экран в виде одной отметки о цели. Усреднение производится методом расчета среднего арифметического значения по каждой из координат.

Таким образом, результатом всех этапов третичной обработки является созданная в ЦВС динамическая модель воздушной обстановки в границах группировки РТВ, обеспечивающая наиболее полное использование бое­вых возможностей огневых средств ПВО при отражении ударов воздуш­ного противника.


Диаграммой направленности антенны (ДНА) называется график зависимости мощности, излучаемой антенной, от направления излучения. Обычно измеряется на уровне 0,7 (по амплитуде) или 0,5 (по мощности) от максимума излучения. Характеризуется осью диаграммы (равносигнальным направлением) – направление максимума излучения.

Контрольный сигнал «пилот» представляет собой радиоимпульс малой мощности и служит для автоматической настройки коэффициентов усиления приемника.

Параллаксом называется расстояние между двумя объектами – РЛС1 и РЛС2

Предисловие к изданию на русском языке
Предисловие редактора
Предисловие
Список используемых обозначений
Глава 1. Введение
1.1. Цифровая обработка информации в РЛС
1.1.1. Классификация РЛС
1.1.2. Общие сведения о функциональных элементах РЛС
1.1.3. Принципы построения РЛС с сопровождением в режиме обзора
1.2. Обработка данных в РЛС с ФАР
1.2.1. ФАР с электронным сканированием
1.2.2. Использование ФАР в РЛС
1.2.3. Контроллер
1.2.4. Сопровождение целей с использованием ФАР
1.3. Обработка данных в сетях РЛС
1.3.1. Примеры радиолокационных сетей
1.3.2. Способы обработки данных
1.3.3. Двухпозиционные РЛС и сети двухпозиционных РЛС
1.4. Фильтры сопровождения
1.4.1. Общие положения теории систем
1.4.2. Теория статистической фильтрации
1.4.3. Применение теории фильтрации
1.5. Применение систем ЦОРИ в РЛС
1.5.1. Примеры применения ЦОРИ
1.6. Заключение
Глава 2. Математический аппарат теории оценивания и фильтрации
2.1. Введение в теорию оценивания
2.1.1. История вопроса
2.1.2. Основные определения
2.1.3. Классификация задач оценивания
2.1.4. Критерий наименьших квадратов
2.1.5. Критерий минимума средней квадратической ошибки
2.1.6. Критерий максимального правдоподобия
2.1.7. Критерий максимальной апостериорной вероятности (байесовский критерий)
2.2. Подробное рассмотрение оценивания по критерию минимума средней квадратической ошибки в параметрических задачах
2.2.1. Общее решение задачи оценивания по критерию минимума средней квадратической ошибки
2.2.2. Линейный оцениватель по критерию минимума средней квадратической ошибки
2.3. Оценивание по критерию минимума средней квадратической ошибки в динамических задачах
2.3.1. Модели систем
2.3.2. Фильтрация, экстраполяция и сглаживание
2.3.3. Линейная экстраполяция и фильтрация при оценивании по критерию минимума средней квадратической ошибки
2.4. Калмановская фильтрация
2.4.1. Дискретный калмановский фильтр и экстраполятор
2.4.2. Численный пример
2.4.3. Стационарный режим работы калмановского фильтра
2.5. Адаптивная фильтрация
2.5.1. Введение
2.5.2. Чувствительность и расходимость калмановского фильтра
2.5.3. Байесовские методы адаптивной фильтрации
2.5.4. Субоптимальные небайесовские адаптивные фильтры
2.6. Нелинейная фильтрация
2.6.1. Введение
2.6.2. Расширенный калмановский фильтр
2.6.3. Другие субоптимальные методы фильтрации
2.7. Заключение
Глава 3. Система сопровождения целей в режиме обзора
3.1. Введение
3.2. Принципы построения систем СЦРО
3.2.1. Структура файлов данных
3.2.2. Формирование и обновление карты отражений от местных предметов
3.3. Математические модели датчика и траектории цели
3.3.1. Система координат
3.3.2. Радиолокационные измерения
3.3.3. Модель цели
3.4. Фильтры сопровождения
3.4.1. Применение калмановского алгоритма
3.4.2. а-B-алгоритм
3.4.3. Двумерная задача
3.4.4. Адаптивный метод сопровождения маневрирующей цели
3.5. Привязка отметок к траекториям
3.5.1. Алгоритмы сопоставления и привязки отметок к траекториям
3.5.2. Форма и размеры корреляционных стробов
3.6. Методы завязки траектории
3.6.1. Характеристики алгоритмов завязки траектории
3.6.2. Метод скользящего окна
3.6.3. Пример применения алгоритма
3.6.4. Форма и размеры стробов завязки траектории
3.7. Заключение
Глава 4. Алгоритмы сопровождения
4.1. Введение
4.2. Основные особенности базового фильтра сопровождения
4.2.1. Подход Сингера
4.2.2. Полумарковский подход
4.2.3. Нелинейная фильтрация данных радиолокационных измерений
4.3. Адаптивная фильтрация при сопровождении маневрирующей цели
4.3.1. Алгоритм обнаружения маневра
4.3.2. Способы реализации адаптивности
4.4. Фильтрация в условиях отражений от местных предметов
4.4.1. Оптимальный байесовский подход
4.4.2. Субоптимальные алгоритмы
4.4.3. Совместная оптимизация обработки сигналов и радиолокационных данных
4.5. Фильтрация при наличии нескольких целей
4.5.1. Случай двух пересекающихся траекторий
4.5.2. Оптимальный и субоптимальный фильтры сопровождения
4.5.3. Сопровождение групповой цели (боевого порядка)
4.6. Сопровождение с использованием результатов измерений радиальной скорости
4.6.1. Сопровождение одиночной цели при отсутствии помех
4.6.2. Сопровождение одиночной цели на фоне отражений от местных предметов
4.6.3. Случай двух пересекающихся траекторий
4.6.4. Линейная обработка измерений радиальной скорости
4.7. Активное сопровождение с использованием фазированной антенной решетки
4.7.1. Адаптивное управление темпом обновления траектории
4.7.2. Сопровождение нескольких целей с использованием перекрывающихся последовательностей импульсов
4.8. Бистатические системы сопровождения
4.8.1. Структура фильтра сопровождения
4.8.2. Сравнительный анализ моностатической и бистатической РЛС
4.9. Заключение
Список литературы
Список работ, переведенных на русский язык
Дополнение. Новые методы обработки информации в пространстве состояний на основе теории оценивания (Юрьев А. Н., Бочкарев Л. М.)
Д.1. Общие вопросы фильтраций и оценивания
Д.2. Обнаружение и различение траекторий целей
Д.З. Сопровождение маневрирующей цели
Д.4. Сопровождение нескольких целей
Д.5. Сопровождение целей с использованием нескольких датчиков
Список литературы к дополнению

Третичная (мультирадарная) обработка – это процесс обработки сигналов или объединения первичной РЛИ по пространству с целью улучшения характеристик радиолокационного наблюдения.

Если сигналы или первичную РЛИ, полученные в отдельных пунктах наблюдения, передать и сосредоточить в некотором центре обработки, то это позволит использовать дополнительную энергетику, корреляционные связи и пространственное подобие первичной РЛИ об одной цели от разных источников.

Энергетика принятого сигнала, которую можно использовать, пропорциональна суммарному раскрыву разреженной антенны.

Корреляционные связи принятых в разных точках пространства сигналов определяются расстоянием между этими точками и интервалом пространственной корреляции рассеянного или излученного целью сигнала. Последний определяется длиной волны l, раскрывом антенны излучающей системы L а и расстоянием от цели до зоны анализа R ц: . Если расстояние между пунктами приема Dl меньше интервала пространственной корреляции сигнала dl, то принятые в этих пунктах приема сигналы являются коррелированными и их коэффициент корреляции можно считать равным

. (10.15)

В противном случае сигналы некоррелированы.

Пространственное подобие первичной РЛИ об одной цели от разных источников, обусловленное фактическим наличием цели в определенной точке пространства, может быть использовано для отождествления РЛИ.

Техническим средством третичной обработки является многопозиционная радиолокационная система (МП РЛС), которая включает несколько разнесенных в пространстве приемных, передающих или приемопередающих позиций и в которой производится совместная обработка сигналов, поступающих от этих позиций. Центр совместной обработки соединяется линиями связи со всеми позициями.

Можно назвать три способа пространственного объединения сигналов и первичной РЛИ:

· пространственно-когерентное объединение сигналов с привязкой позиций по времени, частоте и фазе принятых колебаний;

· частичное (неполное) пространственно-когерентное объединение сигналов с привязкой позиций по времени и частоте;

· пространственно-некогерентное объединение сигналов и первичной РЛИ с привязкой позиций только по времени.

В пространственно-когерентных МП РЛС взаимные фазовые сдвиги сигналов в трактах разнесенных позиций и линиях связи известны и сохраняются практически неизменными на интервале времени, намного превышающем время наблюдения сигнала. В таких РЛС необходима взаимная привязка не только по времени и частоте, но и по начальным фазам колебаний. Это можно обеспечить с помощью опорного сигнала, позволяющего измерять фазовые сдвиги и осуществлять коррекцию или учет при обработке.

В пространственно-когерентных МП РЛС с частичной пространственной когерентностью, которая сохраняется на интервале времени порядка времени наблюдения, информация о начальных фазах сигналов не используется. Привязка позиций осуществляется только по времени и частоте.

В пространственно-некогерентных МП РЛС фазовая информация полностью исключается в результате детектирования сигналов до их объединения. Объединение сигналов может осуществляться на следующих уровнях:

· объединение видеосигналов после детектирования в каждой позиции;

· объединение обнаруженных отметок и единичных замеров; при этом вся первичная обработка проводится на каждой позиции, а на совместную обработку поступает только полезная информация;

· объединение траекторий, при этом первичная и вторичная обработка проводится на каждой позиции. Параметры траектории передаются в центр обработки, в результате которой отсеиваются «ложные» траектории.

Принято различать следующие группы МП РЛС:

· пространственно-некогерентные МП РЛС;

· активные пространственно-когерентные МП РЛС с кратковременной пространственной когерентностью;

· пассивные пространственно-когерентные МП РЛС, в которых используется излученный целью сигнал;

· пространственно-когерентные МП РЛС с продолжительной пространственной когерентностью.

Пространственно-разнесенные МП РЛС обладают следующими свойствами:

1. Высокие энергетические характеристики из-за использования энергии каждой передающей позиции всеми приемными.

2. Высокоточное измерение пространственного положения целей с использованием слабонаправленных антенн.

3. Возможность измерения не только трех координат, но и векторов скорости и ускорения.

4. Увеличение объема сигнальной информации для решения задач распознавания классов обнаруженных целей.

5. Повышение помехозащищенности от активных и пассивных помех.

6. Повышение живучести.

К недостаткам следует отнести следующее:

1. Необходимость совместного управления позициями.

2. Необходимость передачи данных по линиям связи.

3. Дополнительные требования по взаимной привязке.

4. Повышение требований к устройствам обработки.

5. Необходимость геодезической или навигационной привязки.

Таким образом, применение МП РЛС целесообразно при высоких требованиях к информативности, помехоустойчивости, живучести.